Skip to main content

Advertisement

Log in

BICA: a binary imperialist competitive algorithm and its application in CBIR systems

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Imperialist Competitive Algorithm (ICA), which is a mathematical model and the computer simulation of human social evolution, works as a successful algorithm in many optimization problems. In this paper a new binary version of imperialist competitive algorithm, namely BICA is proposed using a well appropriated transfer function and optimal parameter setting. These allow the algorithm to explore a larger number of possible solutions and avoid the stagnation. To assess the performance of the proposed method the 0–1 knapsack problem, the feature selection problem and the Content-Based Image Retrieval (CBIR) systems are experienced; and the effectiveness of this method is compared with the state-of-the-art algorithms. Comparative results confirm the performance of the proposed BICA in all three applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Holland JH (1975) Adaptation in natural and artificial systems, MIT Press, Cambridge

    Google Scholar 

  2. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, pp 1942–1948

  3. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. IEEE Int Conf Comput Cybern Simul 5:4104–4108

    Google Scholar 

  4. Nezamabadi-pour H, Rostami-shahrbabaki M, Farsangi MM (2008) Binary particle swarm optimization: challenges and new solutions. J Comput Soc Iran (CSI) Comput Sci Eng (JCSE) 6(1-A):21–32

    Google Scholar 

  5. Afshinmanesh F, Marandi A, Rahimi-Kian A (2005) A novel binary particle swarm optimization method using artificial immune system. EUROCON 2005, Serbia

    Book  Google Scholar 

  6. Pampara G, Franken N, Engelbrecht AP (2005) Combining particle swarm optimisation with angle modulation to solve binary problems. IEEE Congr Evol Comput 1:89–96

    Google Scholar 

  7. Mirjalili S, Mohd Hashim SZ, Taherzadeh G, Mirjalili SZ, Salehi S (2011) A study of different transfer functions for binary version of particle swarm optimization. In: Proceedings of international conference on genetic and evolutionary methods

  8. Lee S, Soak S, Oh S, Pedrycs W, Jeon M (2008) Modified binary particle swarm optimization. Prog Nat Sci 18:161–166

    Article  MathSciNet  Google Scholar 

  9. Wang XZ, He YL, Dong LC, Zhao HY (2011) Particle swarm optimization for determining fuzzy measures from data. Inf Sci 181(19):4230–4252

    Article  MATH  Google Scholar 

  10. Dorigo M, Maniezzo V, Coloni A (1991) Positive feedback as a search strategy. Technical report. Dipartimento di Elettronica e Informatica, Politecnico di Milano, Milano

  11. Bu T, Yu S, Guan H (2004) Binary-coding-based ant colony optimization and its convergence. J Comput Sci Technol 19(4):472–478

    Article  Google Scholar 

  12. Kong M, Tian P (2005) A binary ant colony optimization for the unconstrained function optimization problem. In: Proceeding of CIS 2005, Part I, LNAI 3801, pp 682–687

    Chapter  Google Scholar 

  13. Kong M, Tian P (2006) Introducing a binary ant colony optimization. In: Proceeding of ANTS 2006, LNCS 4150, pp 444–451

    Chapter  Google Scholar 

  14. Fernandes CM, Rosa AC, Ramos V (2007) Binary ant algorithm. In: Proceeding of GECCO’07, London

    Book  Google Scholar 

  15. Mavrovouniotis M, Yang Sh (2015) Applying Ant colony optimization to dynamic binary-encoded problems. In: Mora A, Squillero G (eds) Applications of evolutionary computation. EvoApplications 2015. Lecture notes in Computer Science, vol 9028. Springer, Cham, pp 845–856

    Google Scholar 

  16. Kashef Sh, Nezamabadi-pour H (2015) An advanced ACO algorithm for feature subset selection. Neurocomputing 147:271–279

    Article  Google Scholar 

  17. Storn R, Price KV (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. In: Technology report. Berkeley, TR-95-012

  18. Deng C, Zhao B, Yang Y, Deng A (2010) Novel binary differential evolution without scale factor. In: Proceeding of the third International workshop on advanced computer intelligence, pp 250–253

  19. Solos LP, Tassopoulos LX, Beligiannis GN (2016) Optimizing shift scheduling for tank trucks using an effective stochastic variable neighbourhood approach. Int J Artif Intell 14(1):1–26

    Google Scholar 

  20. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. J Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  21. Rashedi E, Nezamabadi-pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. J Nat Comput 9:727–745

    Article  MathSciNet  MATH  Google Scholar 

  22. Rashedi E, Nezamabadi-pour H (2014) Feature subset selection using improved binary gravitational search algorithm. J Intell Fuzzy Syst 26:1211–1221

    Google Scholar 

  23. Precup RE, David RC, Petriu EM, Preitl S, Paul AS (2011) Gravitational search algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity. In: Gaspar-Cunha A, Takahashi R, Schaefer G, Costa L (eds) Soft computing in industrial applications. Springer, Berlin. Adv Intell Soft Comput 96:141–150

    Chapter  Google Scholar 

  24. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. IEEE Congress on Evolutionary Computation, pp 4661–4667

  25. Rajabioun R, Atashpaz-Gargari E, Lucas C (2008) Colonial competitive algorithm as a tool for Nash equilibrium point achievement. Comput Sci Appl ICCSA, pp 680–695

  26. Moghimi Hadji M, Vahidi B (2012) A solution to the unit commitment problem using imperialistic competition algorithm. Power Syst IEEE Trans 27(1):117–124

    Article  Google Scholar 

  27. Khabbazi A, Atashpaz-Gargari E, Lucas C (2009) Imperialist competitive algorithm for minimum bit error rate beamforming. Int J Bio-Inspired Comput 1(1/2):125–133

    Article  Google Scholar 

  28. Nozarian Sh, Soltanpoor H, Vafaei Jahan M (2012) A binary model on the basis of imperialist competitive algorithm in order to solve the problem of knapsack 1-0. In: IPCSIT, vol 34, pp 130–135

  29. Mohammadi-ivatloo B, Rabiee A, Soroudi A, Ehsan M (2012) Imperialist competitive algorithm for solving no n-convex dynamic economic power dispatch. Energy 44:228–240

    Article  Google Scholar 

  30. Zenga X, Li, Y, Qina Y (2009) A dynamic chain-like agent genetic algorithm for global numerical optimization and feature selection. Neurocomputing 72(4–6):1214–1228

    Article  Google Scholar 

  31. Avishek P, Maitib J (2010) Development of a hybrid methodology for dimensionality reduction in Mahalanobis-Taguchi system using Mahalanobis distance and binary particle swarm optimization. Expert Syst Appl 37(2):1286–1293

    Article  Google Scholar 

  32. Zhang G (2011) Quantum-inspired evolutionary algorithms: a survey and empirical study. (2011) Heuristics 17:303–351

    Article  MATH  Google Scholar 

  33. Jeong YW, Park JB, Jang SH, Lee KY (2010) A new quantum-inspired binary PSO: application to unit commitment problems for power systems. IEEE Trans Power Syst 25(3):1486–1495

    Google Scholar 

  34. Nezamabadi-pour H (2015) A quantum-inspired gravitational search algorithm for binary encoded optimization problems. Eng Appl Artif Intell 40:62–75

    Article  Google Scholar 

  35. Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 17(4):491–502

    Article  Google Scholar 

  36. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  37. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1:131–156

    Article  Google Scholar 

  38. Raymer ML, Punch WF, Goodman ED, Kuhn LA, Jain AK (2000) Dimensionality reduction using genetic algorithms. IEEE Trans Evol Comput 4:164–171

    Article  Google Scholar 

  39. Tanaka K, Kurita T, Kawabe T (2007) Selection of import vectors via binary particle swarm optimization and cross-validation for kernel logistic regression. In: Proceedings of international joint conference on networks, Orlando, pp 12–17

  40. Chuang LY, Yang CH, Li JC (2011) Chaotic maps based on binary particle swarm optimization for feature selection. Appl Soft Comput 11:239–248

    Article  Google Scholar 

  41. Wang X, Yang J, Teng X, Xia W, Jensen R (2007) Feature selection based on rough sets and particle swarm optimization. Pattern Recognit Lett 28(4):459–471

    Article  Google Scholar 

  42. Chuang LY, Tsai SW, Yang CH (2011) Improved binary particle swarm optimization using catfish effect for feature selection. Expert Syst Appl 38:12699–12707

    Article  Google Scholar 

  43. Al-Ani A (2005) Feature subset selection using ant colony optimization. Int J Comput Intell 2(1):53–58

    Google Scholar 

  44. Zhang CK, Hu H (2005) Feature selection using the hybrid of ant colony optimization and mutual information for the forecaster. In: Proceeding of the 4th international conference on machine learning and cybernetics, pp 1728–1732

  45. Chen B, Chen L, Chen Y (2013) Efficient ant colony optimization for image feature selection. Signal Process 93:1566–1576

    Article  Google Scholar 

  46. Lichman M (2013) UCI machine learning repository. http://archive.ics.uci.edu/ml. University of California, School of Information and Computer Science, Irvine, CA

  47. Ng WWY, Feng S, Yeung DS, Chan PPK (2015) Sensitivity based image filtering for multi-hashing in large scale image retrieval problems. Int J Mach Learn Cybern 6(5):777–794

    Article  Google Scholar 

  48. Chang SF, Sikora T, Puri A (2001) Overview of the MPEG-7 standard. IEEE Trans Circuits Syst Video Technol 11(6):688–695

    Article  Google Scholar 

  49. Rashedi E, Nezamabadi-pour H (2012) Improving the precision of CBIR systems by feature selection using binary gravitational search algorithm. In: Proceedings of the 16th CSI international symposium on artificial intelligence and signal, pp 39–42

  50. Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantic sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Nezamabadi-pour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirhosseini, M., Nezamabadi-pour, H. BICA: a binary imperialist competitive algorithm and its application in CBIR systems. Int. J. Mach. Learn. & Cyber. 9, 2043–2057 (2018). https://doi.org/10.1007/s13042-017-0686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-017-0686-4

Keywords

Navigation