Skip to main content
Log in

Synthesizing decision rules from multiple information sources: a neighborhood granulation viewpoint

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In the big data era, data are usually described by multiple information sources in many practical application fields, and it is infeasible way to mine interesting knowledge from a centralized huge source directly after aggregating all information sources, due to the problems of massive data, privacy concerns, and potential transmission cost. To mine decision rules from multiple information sources, therefore, we can mine local decision rules at different local information sources, and then put these rules to form a set of global decision rules. In this paper, we first present a formal representation of decision rule, which depends on the neighborhood granulation of each sample from the viewpoint of granular computing. Then, we obtain the weight of each local information source based on the consensus measure principle between local information sources. Finally, a weighting model for mining global decision rules via synthesizing all local decision rules is proposed. Extensive experimental results demonstrate that the proposed decision rules synthesization model is effective and scalable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Stouhi S, Reddy C (2016) Transfer learning for class imbalance problems with inadequate data. Knowl Inf Syst 48(1):201–228

    Article  Google Scholar 

  2. Cai M, Li Q, Ma J (2017) Knowledge reduction of dynamic covering decision information systems caused by variations of attribute values. Int J Mach Learn Cybern 8(4):1131–1144

    Article  Google Scholar 

  3. Chen CL, Zhang CY (2014) Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf Sci 275:314–347

    Article  Google Scholar 

  4. Chen D, Wang C, Hu Q (2007) A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets. Inf Sci 177:3500–3518

    Article  MathSciNet  Google Scholar 

  5. Chen J, Lin Y, Lin G, Li J, Zhang Y (2017) Attribute reduction of covering decision systems by hypergraph model. Knowl-Based Syst 118:93–104

    Article  Google Scholar 

  6. Dai J, Tian H, Wang W, Liu L (2013) Decision rule mining using classification consistency rate. Knowl Based Syst 43:95–102

    Article  Google Scholar 

  7. Du Y, Hu Q, Zhu P, Ma P (2011) Rule learning for classification based on neighborhood covering reduction. Inf Sci 181:5457–5467

    Article  MathSciNet  Google Scholar 

  8. Feng Q, Miao D, Cheng Y (2010) Hierarchical decision rules mining. Expert Syst Appl 37(3):2081–2091

    Article  Google Scholar 

  9. Gao J, Fan W, Sun Y et al. (2009) Heterogeneous source consensus learning via decision propagation and negotiation. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining, Paris, France, pp 339–347

  10. Hong R, Zhang L, Tao D (2016) Unified photo enhancement by discovering aesthetic communities from flickr. IEEE Trans Image Process 25(3):1124–1135

    Article  MathSciNet  Google Scholar 

  11. Hong R, Yang Y, Wang M, Hua X (2015) Learning visual semantic relationships for efficient visual retrieval. IEEE Trans Big Data 1(4):152–161

    Article  Google Scholar 

  12. Hu Q, Yu D, Xie Z (2008) Neighborhood classifiers. Expert Syst Appl 34:866–876

    Article  Google Scholar 

  13. Hu Q, Yu D, Liu J, Wu C (2008) Neighborhood rough set based heterogeneous feature selection. Inf Sci 78:3577–3594

    Article  MathSciNet  Google Scholar 

  14. Hu J, Wang G (2009) Knowledge reduction of covering approximation space. Transactions on computational science, special issue on cognitive knowledge representation, pp 69–80

  15. Li F, Qian Y, Wang J, Liang J (2017) Multigranulation information fusion: a Dempster–Shafer evidence theory-based clustering ensemble method. Inf Sci 378:389–409

    Article  Google Scholar 

  16. Li Z, Liu Y, Li Q, Qin B (2016) Relationships between knowledge bases and related results. Knowl Inf Syst 49(1):171–195

    Article  Google Scholar 

  17. Li S, Li T, Zhang Z, Chen H, Zhang J (2015) Parallel computing of approximations in dominance-based rough sets approach. Knowl Based Syst 87:102–111

    Article  Google Scholar 

  18. Lin Y, Hu X, Li X, Wu X (2013) Mining stable patterns in multiple correlated databases. Decis Support Syst 56:202–210

    Article  Google Scholar 

  19. Lin Y, Hu X, Wu X (2014) Ensemble learning from multiple information sources via label propagation and consensus. Appl Intell 41(1):30–41

    Article  Google Scholar 

  20. Lin Y, Hu X, Wu X (2014) Quality of information-based source assessment and selection. Neurocomputing 133:95–102

    Article  Google Scholar 

  21. Lin Y, Li J, Lin P, Lin G, Chen J (2014) Feature selection via neighborhood multi-granulation fusion. Knowl Based Syst 67:162–168

    Article  Google Scholar 

  22. Lin G, Liang J, Qian Y (2015) An information fusion approach by combining multigranulation rough sets and evidence theory. Inf Sci 314:184–199

    Article  MathSciNet  Google Scholar 

  23. Lin G, Liang J, Qian Y, Li J (2016) A fuzzy multigranulation decision-theoretic approach to multi-source fuzzy information systems. Knowl Based Syst 91:102–113

    Article  Google Scholar 

  24. Liu H, Lu H, Yao H (2001) Toward multi-database mining: identifying relevant databases. IEEE Trans Knowl Data Eng 13(4):541–553

    Article  Google Scholar 

  25. Luo C, Li T, Yi Z, Fujita H (2016) Matrix approach to decision-theoretic rough sets for evolving data. Knowl Based Syst 99:123–134

    Article  Google Scholar 

  26. Pedrycz W (2013) Granular computing: analysis and design of intelligent systems. CRC Press, Boca Raton

    Book  Google Scholar 

  27. Qian Y, Liang J, Yao Y, Dang C (2010) MGRS: a multi-granulation rough set. Inf Sci 180:949–970

    Article  MathSciNet  Google Scholar 

  28. Qian J, Xia M, Yue X (2017) Parallel knowledge acquisition algorithms for big data using MapReduce. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-016-0624-x

    Article  Google Scholar 

  29. Qian Y, Zhang H, Sang Y, Liang J (2014) Multigranulation decision-theoretic rough sets. Int J Approx Reason 55:225–237

    Article  MathSciNet  Google Scholar 

  30. Shakiba A, Hooshmandasl M (2016) Neighborhood system S-approximation spaces and applications. Knowl Inf Syst 49(2):749–794

    Article  Google Scholar 

  31. Song M, Shang W, Wang L, Pedrycz W (2017) Analysis of spatiotemporal data relationship using information granules. Int J Mach Learn Cybern 8(5):1439–1446

    Article  Google Scholar 

  32. Tsang Eric CC, Hu Q, Chen D (2016) Feature and instance reduction for PNN classifiers based on fuzzy rough sets. Int J Mach Learn Cybern 7(1):1–11

    Article  Google Scholar 

  33. Wang C, Wu C, Chen D, Hu Q (2008) Communication between information systems. Inf Sci 178:3228–3239

    Article  Google Scholar 

  34. Wang C, Chen D, Zhu L (2009) Homomorphisms between fuzy information systems. Appl Math Lett 22:1045–1050

    Article  MathSciNet  Google Scholar 

  35. Wang C, Chen D, Hu Q (2014) Fuzzy information systems and their homomorphisms. Fuzzy Sets Syst 249:128–138

    Article  MathSciNet  Google Scholar 

  36. Wang X, Dong C, Fan T (2007) Training T-S norm neural networks to refine weights for fuzzy if-then rules. Neurocomputing 70(13–15):2581–2587

    Article  Google Scholar 

  37. Wang X, Li C (2005) A new definition of sensitivity for RBFNN and its applications to feature reduction. Lecture Notes in Computer Science, 3496: 81–86

  38. Wang X, Hong J (1998) On the handling of fuzziness for continuous-valued attributes in decision tree generation. Fuzzy Sets Syst 99(3):283–290

    Article  MathSciNet  Google Scholar 

  39. Wang R, Wang X, Kwong S (2017) Incorporating diversity and informativeness in multiple-instance active learning. IEEEE Trans Fuzzy Syst 25(6):1460–1475

    Article  Google Scholar 

  40. Tsang B, Liang J, Qian Y (2015) Determining decision makers’ weights in group ranking: a granular computing method. Int J Mach Learn Cybern 6(3):511–521

    Article  Google Scholar 

  41. Wu X, Zhu X, Wu G, Ding W (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26(1):97–107

    Article  Google Scholar 

  42. Wu X, Zhang S, Zhang C (2005) Database classification for multi-database mining. Inf Syst 30(1):71–88

    Article  Google Scholar 

  43. Wu X, Zhang S (2013) Synthesizing high-frequency rules from different data sources. IEEE Trans Knowl Data Eng 15(2):353–367

    Google Scholar 

  44. Wu W, Qian Y, Li T, Gu S (2017) On rule acquisition in incomplete multi-scale decision tables. Inf Sci 378:282–302

    Article  MathSciNet  Google Scholar 

  45. Wu W, Leung Y (2013) Optimal scale selection for multi-scale decision tables. Int J Approx Reason 54(8):1107–1129

    Article  MathSciNet  Google Scholar 

  46. Wu W, Leung Y (2013) Theory and applications of granular labelled partitions in multi-scale decision tables. Inf Sci 181:3878–3897

    Article  Google Scholar 

  47. Wu W., Shao M, Wang X (2017) Using single axioms to characterize (S, T)-intuitionistic fuzzy rough approximation operators. In J Mach Learn Cybern 1–16

  48. Xu W, Yu J (2017) A novel approach to information fusion in multi-source datasets: a granular computing viewpoint. Inf Sci 378:410–423

    Article  Google Scholar 

  49. Xu W, Li M, Wang X (2016) Information fusion based on information entropy in fuzzy multi-source incomplete information system. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-016-0230-9

    Article  Google Scholar 

  50. Xu W, Li W, Zhang X (2013) Generalized multigranulation rough sets and optimal granularity selection. Granul Comput. https://doi.org/10.1007/s41066-017-0042-9

    Article  Google Scholar 

  51. Yang X, Qian Y, Yang J (2012) Hierarchical structures on multigranulation spaces. J Comput Sci Technol 27(6):1169–1183

    Article  MathSciNet  Google Scholar 

  52. Yao J, Vasilakos A, Pedrycz W (2013) Granular computing: perspectives and challenges. IEEE Trans Cybern 43(6):1977–1989

    Article  Google Scholar 

  53. Yao YY (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inf Sci 101:239–259

    Article  MathSciNet  Google Scholar 

  54. Yao YY (2016) Rough set models in multigranulation spaces. Inf Sci 327:40–56

    Article  MathSciNet  Google Scholar 

  55. Yu J, Xu W (2017) Incremental knowledge discovering in interval-valued decision information system with the dynamic data. Int J Mach Learn Cybern 8(3):849–864

    Article  Google Scholar 

  56. Zadeh L (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90:111–127

    Article  MathSciNet  Google Scholar 

  57. Zhang Y, Hu X, Li P, Li L, Wu X (2015) Cross-domain sentiment classification-feature divergence, polarity divergence or both? Pattern Recogn Lett 65:44–50

    Article  Google Scholar 

  58. Zhao Y, Li J, Liu W, Xu W (2017) Cognitive concept learning from incomplete information. Int J Mach Learn Cybern 8(1):159–170

    Article  Google Scholar 

  59. Zhu X, Jin R (2009) Multiple information sources cooperative learning. In: Proceedings of the 21st international joint conference on artificial intelligence (IJCAI-09), California, 1369–1376

  60. Zhu P, Hu Q (2013) Adaptive neighborhood granularity selection and combination based on margin distribution optimization. Inf Sci 249:1–12

    Article  MathSciNet  Google Scholar 

  61. Zhu P, Hu Q, Zuo W, Yang M (2014) Multi-granularity distance metric learning via neighborhood granule margin maximization. Inf Sci 282:321–331

    Article  Google Scholar 

  62. Zhu P, Hu Q, Han Y, Zhang C, Du Y (2016) Combining neighborhood separable subspaces for classification via sparsity regularized optimization. Inf Sci 370–371:270–287

    Article  Google Scholar 

  63. http://archive.ics.uci.edu/ml/

  64. http://www.ics.uci.edu/%20mlearn/MLSummary.html

Download references

Acknowledgements

This work is supported by grants from the National Natural Science Foundation of China (Nos. 61672272, 61303131, and 61603173), the China Postdoctoral Science Foundation (2015M581298), the Program for New Century Excellent Talents in Fujian Province University, and the Natural Science Foundation of Fujian Province (Nos. 2016J01315, 2017J01507, and 2016J01314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Chen, H., Lin, G. et al. Synthesizing decision rules from multiple information sources: a neighborhood granulation viewpoint. Int. J. Mach. Learn. & Cyber. 9, 1919–1928 (2018). https://doi.org/10.1007/s13042-018-0791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0791-z

Keywords

Navigation