Skip to main content

Advertisement

Log in

A collaboration-based particle swarm optimizer for global optimization problems

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This paper introduces a collaboration-based particle swarm optimizer (PSO) by incorporating three new strategies: a global learning strategy, a probability of learning, and a “worst replacement” swarm update rule. Instead of learning from the personal historical best position and the global (or local) best position which was used by the classical PSO, a target particle learns from another randomly chosen particle and the global best one in the swarm. Instead of accepting a new velocity directly, the velocity updates according to a learning probability, according to which the velocity of the target particle in each dimension updates via learning from other particles or simply inherits its previous velocity component. Since each particle has the same chance to be selected as a leader, the worst particle might influence the whole swarm’s performance. Therefore, the worst particle in the swarm in each update is moved to a new better position generated from another particle. The proposed algorithm is shown to be statistically significantly better than six other state-of-the-art PSO variants on 20 typical benchmark functions with three different dimensionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol 1, pp 39–43

  2. Li X (2003) A non-dominated sorting particle swarm optimizer for multi-objective optimization. In: Proceedings of genetic and evolutionary computation conference, lecture notes in computer science. Springer, Berlin, vol 2723, pp 37–48

  3. Chunkai Z, Yu L, Huihe S (2000) A new evolved artificial neural network and its application. In: Proceedings of the 3rd world congress on intelligent control and automation, IEEE, vol 2, pp 1065–1068

  4. Verma R, Mehra R (2016) PSO algorithm based adaptive median filter for noise removal in image processing application. Int J Adv Comput Sci Appl 1(7):92–98

    Google Scholar 

  5. Rana S, Jasola S, Kumar R (2013) A boundary restricted adaptive particle swarm optimization for data clustering. Int J Mach Learn Cybern 4(4):391–400

    Article  Google Scholar 

  6. Subasi A (2013) Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput Biol Med 43(5):576–586

    Article  Google Scholar 

  7. Lin CM, Li MC, Ting AB, Lin MH (2011) A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm. Int J Mach Learn Cybern 2(4):225–234

    Article  Google Scholar 

  8. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 congress on evolutionary computation, IEEE, vol 2, pp 1671–1676

  9. Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 congress on evolutionary computation. IEEE, vol 3, pp 1931–1938

  10. Zhan ZH, Zhang J, Li Y et al (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Part B (Cybern) 39(6):1362–1381

    Article  Google Scholar 

  11. Xu G (2013) An adaptive parameter tuning of particle swarm optimization algorithm. Appl Math Comput 219(9):4560–4569

    MathSciNet  MATH  Google Scholar 

  12. Li C, Yang S, Nguyen TT, Part B (2012) A self-learning particle swarm optimizer for global optimization problems. IEEE Trans Syst Man Part B (Cybern) 42(3):627–646

    Article  Google Scholar 

  13. Liang JJ, Qin AK, Suganthan PN et al (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  14. Cheng R, Jin Y (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inf Sci 291:43–60

    Article  MathSciNet  MATH  Google Scholar 

  15. Li X (2010) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169

    Article  Google Scholar 

  16. Parrott D, Li X (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans Evol Comput 10(4):440–458

    Article  Google Scholar 

  17. Yang S, Li C (2010) A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput 14(6):959–974

    Article  Google Scholar 

  18. Chen W, Zhang J, Lin Y et al (2013) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evol Comput 17(2):241–258

    Article  Google Scholar 

  19. Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer with local search. In: Proceedings of the 2005 IEEE congress on evolutionary computation, IEEE, vol 1, pp 522–528

  20. Li Y, Zhan Z, Lin S et al (2015) Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems. Inf Sci 293:370–382

    Article  Google Scholar 

  21. Nasir M, Das S, Maity D et al (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36

    Article  MathSciNet  Google Scholar 

  22. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optimiz 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  23. He Y, Xie H, Wong TL, Wang X (2018) A novel binary artificial bee colony algorithm for the set-union knapsack problem. Future Gener Comput Syst 78:77–86

    Article  Google Scholar 

  24. Li X, Yang G (2016) Artificial bee colony algorithm with memory. Appl Soft Comput 41:362–372

    Article  Google Scholar 

  25. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Article  Google Scholar 

  26. Eberhart RC, Shi Y (2001) Particle swarm optimization: development, applications and resources. In: Proceedings of the 2001 IEEE congress on evolutionary computation, IEEE, vol 1, pp 81–86

  27. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  28. Zhu H, He Y, Wang X (2017) Discrete differential evolutions for the discounted {0–1} knapsack problem. Int J Bio-Inspir Comput 10(4):219–238

    Article  Google Scholar 

  29. Dong C, Ng WWY, Wang X et al (2014) An improved differential evolution and its application to determining feature weights in similarity-based clustering. Neurocomputing 146:95–103

    Article  Google Scholar 

  30. Das S, Konar A, Chakraborty UK (2005) Improving particle swarm optimization with differentially perturbed velocity. In: Proceedings of the 7th annual conference on genetic and evolutionary computation. ACM, pp 177–184

  31. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of 1998 IEEE world congress on computational intelligence, IEEE, pp 69–73

  32. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

    Article  Google Scholar 

  33. Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation, IEEE, vol 3, pp 1945–1950

  34. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255

    Article  Google Scholar 

  35. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670

    Article  Google Scholar 

  36. Janson S, Middendorf M (2005) A hierarchical particle swarm optimizer and its adaptive variant., IEEE Trans Syst Man Part B (Cybernet) 35(6):1272–1282

    Article  Google Scholar 

  37. Parsopoulos KE, Vrahatis MN (2004) UPSO: a unified particle swarm optimization scheme. Lecture Ser Comput Comput Sci Proc Int Conf Comput Methods Sci Eng 1(5):868–873

    Google Scholar 

  38. Hu M, Wu T, Weir JD (2012) An intelligent augmentation of particle swarm optimization with multiple adaptive methods. Inf Sci 213:68–83

    Article  Google Scholar 

  39. Hu M, Wu T, Weir JD (2013) An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput 17(5):705–720

    Article  Google Scholar 

  40. Wang Y, Li B, Weise T et al (2011) Self-adaptive learning based particle swarm optimization. Inf Sci 181(20):4515–4538

    Article  MathSciNet  MATH  Google Scholar 

  41. Kao YT, Zahara E (2008) A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl Soft Comput 8(2):849–857

    Article  Google Scholar 

  42. Qu B, Liang JJ, Suganthan PN (2012) Niching particle swarm optimization with local search for multi-modal optimization. Inf Sci 197:131–143

    Article  Google Scholar 

  43. Qu B, Suganthan PN, Das S (2013) A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans Evol Comput 17(3):387–402

    Article  Google Scholar 

  44. Liang X, Li W, Zhang Y et al (2015) An adaptive particle swarm optimization method based on clustering. Soft Comput 19(2):431–448

    Article  Google Scholar 

  45. Van den Bergh F, Engelbrecht AP (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239

    Article  Google Scholar 

  46. Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210–224

    Article  Google Scholar 

  47. Wang H, Sun H, Li C et al (2013) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135

    Article  MathSciNet  Google Scholar 

  48. Suganthan PN, Hansen N, Liang JJ et al (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Nanyang Technological University and KanGAL Report, p 2005005

  49. Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments-a survey. IEEE Trans Evol Comput 9(3):303–317

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61573258, in part by the National High-Technology Research and Development Program (863 Program) of China under Grant 2013AA103006-2, in part by the US National Science Foundation’s BEACON Center for the Study of Evolution in Action, funded under Cooperative Agreement no. DBI-0939454, and by the China Scholarship Council under Grant 201506260093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Xu, L. & Goodman, E.D. A collaboration-based particle swarm optimizer for global optimization problems. Int. J. Mach. Learn. & Cyber. 10, 1279–1300 (2019). https://doi.org/10.1007/s13042-018-0810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0810-0

Keywords