Skip to main content
Log in

An improvement to linear regression classification for face recognition

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Linear regression classification (LRC) has attracted a great amount of attention owning to its promising performance in face recognition. However, its performance will dramatically decline in the scenario of limited training samples per class, particularly when only single training sample is available for a specific person. In this paper, a novel LRC based method is proposed to solve this problem. Specifically, we first perform LRC on the training set to obtain a kind of residual for each class. Next, a reverse representation residual is derived for each training sample of a class by exploiting the linear combination of the training samples of its nearest classes and the test sample. Then, we combine the reverse representation residuals of the class by an adaptive weighted-average approach to produce the other kind of residual. Finally, two kinds of residuals are fused to classify the test sample. Experimental results on the ORL, FERET, Libor94 and CMU-PIE face databases demonstrate that the proposed method obtains a higher recognition rate than some state-of-the-art face recognition methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lai Z, Wong W, Xu Y, Sun M, Zhao C (2014) Sparse alignment for robust tensor learning. IEEE Trans Neural Netw Learn Syst 25(10):1779–1792

    Article  Google Scholar 

  2. Zhang Z, Shao L, Xu Y, Liu L, Yang J (2017) Marginal representation learning with graph structure self-adaptation. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2017.2772264

    Google Scholar 

  3. Peng Y, Zhang L, Liu S, Wang X, Guo M (2017) Kernel negative ε dragging linear regression for pattern classification. Complex 2691474:1–14

    Article  MATH  Google Scholar 

  4. Chen G, Tao D, Maybank S, Wei L, Kang G, Jie Y (2016) Multi-modal curriculum learning for semi-supervised image classification. IEEE Trans Image Process 25(7):3249–3260

    Article  MathSciNet  MATH  Google Scholar 

  5. Du B, Xiong W, Wu J, Zhang L, Zhang L, Tao D (2016) Stacked convolutional denoising auto-encoders for feature representation. IEEE Trans Cybern 47(4):1017–1027

    Article  Google Scholar 

  6. Zhang Z, Xu Y, Yang J, Li X, Zhang D (2015) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530

    Article  Google Scholar 

  7. Wright J, Yang A, Ganesh A, Sastry S, Yi M (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227

    Article  Google Scholar 

  8. Lai Z, Wong W, Xu Y, Yang J, Tang J, Zhang D (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw Learn Syst 27(4):723–735

    Article  MathSciNet  Google Scholar 

  9. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition. In: International conference on computer vision, pp. 471–478

  10. Zhang Z, Lai Z, Xu Y, Shao L, Wu J, Xie G (2017) Discriminative elastic-net regularized linear regression. IEEE Trans Image Process 26(3):1466–1481

    Article  MathSciNet  MATH  Google Scholar 

  11. Naseem R, Togneri M, Bennamoun (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  12. Xu Y, Zhang D, Yang J, Yang J (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  MathSciNet  Google Scholar 

  13. Wen X, Wen J (2016) Improved the minimum squared error algorithm for face recognition by integrating original face images and the mirror images[J]. Opt-Int J Light Electron Opt 127(2):883–889

    Article  Google Scholar 

  14. Zhang Z, Wang L, Zhu Q, Liu Z, Chen Y (2015) Noise modeling and representation based classification methods for face recognition. Neurocomputing 148:420–429

    Article  Google Scholar 

  15. Liu S, Li L, Peng Y, Qiu G, Lei T (2017) An improved sparse representation method for image classification. IET Comput Vis 11(4):319–330

    Article  Google Scholar 

  16. Xu Y, Li X, Yang J, Lai Z, Zhang D (2014) Integrating conventional and inverse representation for face recognition. IEEE Trans Cybern 44(10):1738–1747

    Article  Google Scholar 

  17. Wen J, Xu Y, Li Z et al (2018) Inter-class sparsely based discriminative least square regression[J]. Neural Netw 102:36–47

    Article  Google Scholar 

  18. Candemir S, Borovikov E, Santosh KC, Antani S, Thoma G (2015) Rsilc: rotation-and scale-invariant, line-based color-aware descriptor. Image Vis Comput 42:1–12

    Article  Google Scholar 

  19. Srinivasa Perumal R, Chandra Mouli PVSSR (2016) Dimensionality reduced local directional pattern (DR-LDP) for face recognition. Expert Syst Appl 63:66–73

    Article  Google Scholar 

  20. Zhu L, Shen J, Xie L, Cheng Z (2017) Unsupervised visual hashing with semantic assistance for efficient content-based web image retrieval. IEEE Trans Knowl Data Eng 29(2):472–486

    Article  Google Scholar 

  21. Peng Y, Li L, Liu S, Lei T (2018) Space-frequency domain based joint dictionary learning and collaborative representation for face recognition. Signal Process 147:101–109

    Article  Google Scholar 

  22. Liu S, Peng Y, Ben X, Yang W, Qiu G (2016) A novel label learning algorithm for face recognition. Signal Process 124:141–146

    Article  Google Scholar 

  23. Zhu L, Huang Z, Liu X, Xie L (2017) Discrete multi-modal hashing with canonical views for robust mobile landmark search. IEEE Trans Multimedia 19(9):2066–2079

    Article  Google Scholar 

  24. Lai Z, Xu Y, Yang J, Shen L, Zhang D (2017) Rotational invariant dimensionality reduction algorithms. IEEE Trans Cybern 47(11):3733–3746

    Article  Google Scholar 

  25. Nandakumar K, Chen Y, Dass SC, Jain AK (2008) Likelihood ratio-based biometric score fusion. IEEE Trans Pattern Anal Mach Intell 30(2):342–347

    Article  Google Scholar 

  26. Peng Y, Li L, Liu S, Lei T, Wu J (2018) A new virtual samples-based CRC method for face recognition. Neural Process Lett 48:313–327

    Article  Google Scholar 

  27. Zhang D, Song FX, Xu Y, Liang ZZ (2009) Advanced pattern recognitiontechnol-ogies with applications to biometrics. Medical Information Science Reference, New York

    Book  Google Scholar 

  28. Brunelli R, Falavigna D (1995) Person identification using multiple cues. IEEE Trans Pattern Anal Mach Intell 17(10):955–966

    Article  Google Scholar 

  29. Ma Y, Cukic B, Singh H (2005) A classification approach to multibiometric score fusion. In: Proceedings of the fifth international conference on audiovideo-based biometric person authentication, pp 484–493

  30. Xu Y, Zhang D (2010) Represent and fuse bimodal biometric images at the feature level: complex-matrix-based fusion scheme. Opt Eng 49(3):037002

    Article  Google Scholar 

  31. Bengio S, Marcel C, Marcel S, Mariethoz J (2002) Confidence measures for multi-modal identity verification. Inf Fusion 3(4):267–276

    Article  Google Scholar 

  32. Moin MS, Parviz M, Exploring AUC (2009) Boosting approach in multimodal biometrics score level fusion IIH-MSP. IEEE Computer Society, Kyoto pp 616–619

    Google Scholar 

  33. Jain AK, Rosss AA (2002) Learning user-specific parameters in a multibiometric system. In: Proceedings of the international conference on image processing (ICIP), Rochester, September, pp 22–25

  34. Gao G, Zhang L, Yang J, Zhang L, Zhang D (2013) Reconstruction based finger-knuckle-print verification with score level adaptive binary fusion. IEEE Trans Image Process 22(12):5050–5062

    Article  MathSciNet  MATH  Google Scholar 

  35. Moumene ME, Nourine R, Ziou D (2014) Generalized exposure fusion weights estimation. Canadian Conference on Computer and Robot Vision, Montreal, QC, Canada, 6–9 May 2014, pp 71–76

  36. Xu Y, Zhang B, Zhong Z (2015) Multiple representations and sparse representation for image classification. Pattern Recogn Lett 68:9–14

    Article  Google Scholar 

  37. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identication. In: Proceedings of 2nd IEEE workshop applications computer vision, vol 557, pp 138–142 (4)

  38. Georghiades AS, Belhumeur PN, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  39. Yang M, Zhang L, Zhang D, Wang S (2012) Relaxed collaborative representation for pattern classification. In: IEEE conference on computer vision and pattern recognition, pp 2224–2231

  40. Xu Y, Zhu Q, Chen Y, Pan J (2013) An improvement to the nearest neighbor classifier and face recognition experiments. Int J Innov Comput Inf Control 9(2):543–554

    Google Scholar 

  41. Yang Z, Zhou A, Balasubramanian S, Sastry Y, Ma (2017) Fast l1-minimization algorithms for robust face recognition. IEEE Trans Image Process 22(8):3234–3246

    Article  Google Scholar 

  42. Xu Y, Zhu Q, Fan Z, Qiu M, Chen Y, Liu H (2013) Coarse to fine K nearest neighbor classifier. Pattern Recogn Lett 34:980–986

    Article  Google Scholar 

  43. Osborne MR, Presnell B, Turlach BA (2000) A new approach to variable selection in least squares problems. IMA J Numer Anal 20(3):389–403

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu Y, Zhong Z, Yang J, You J, Zhang D (2017) A new discriminative sparse representation method for robust face recognition via L2 regularization. IEEE Trans Neural Netw Learn Syst 28(10):2233–2242

    Article  MathSciNet  Google Scholar 

  45. Zhang Z, Xu Y, Shao L, Yang J (2017) Discriminative block-diagonal representational learning for image recognition. In: IEEE transactions on neural networks and learning systems, pp 2712801. https://doi.org/10.1109/TNNLS

  46. Tong S, Koller D (2001) Support vector machine active learning with applications to text classification. J Mach Learn Res 2(11):45–66

    MATH  Google Scholar 

  47. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  48. http://cswww.essex.ac.uk/mv/allfaces/index.html. Accessed 12 Aug 2018

  49. Sim T, Baker S, Bsat M (2002) The CMU, Pose Illumination, and expression (PIE) database. In: Proceedings of the fifth IEEE international conference on automatic face and gesture recognition, vol 435, pp 46–51 (19)

  50. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13(1):21–27

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61672333, 61402274, 61461025, 61703096), China Postdoctoral Science Foundation Special project (No. 2014T70937), China Postdoctoral Science Foundation (No. 2017M611655), the Program of Key Science and Technology Innovation Team in Shaanxi Province (No. 2014KTC-18), the Key Science and Technology Program of Shaanxi Province, China (No. 2016GY-081), the Natural Science Foundation of Jiangsu Province (No. BK20170691), the Fundamental Research Funds for the Central Universities (No. GK201803059, GK201803088), Interdisciplinary Incubation Project of Learning Science of Shaanxi Normal University, and the Natural Science Foundation of Shaanxi Province of China (No. 2018JM6050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigang Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Ke, J., Liu, S. et al. An improvement to linear regression classification for face recognition. Int. J. Mach. Learn. & Cyber. 10, 2229–2243 (2019). https://doi.org/10.1007/s13042-018-0862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0862-1

Keywords

Navigation