Skip to main content
Log in

Boosting galactic swarm optimization with ABC

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Galactic swarm optimization (GSO) is a new global metaheuristic optimization algorithm. It manages multiple sub-populations to explore search space efficiently. Then superswarm is recruited from the best-found solutions. Actually, GSO is a framework. In this framework, search method in both sub-population and superswarm can be selected differently. In the original work, particle swarm optimization is used as the search method in both phases. In this work, performance of the state of the art and well known methods are tested under GSO framework. Experiments show that performance of artificial bee colony algorithm under the GSO framework is the best among the other algorithms both under GSO framework and original algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aimin F, Wang X, He Y, Wang L (2014) A study on residence error of training an extreme learning machine and its application to evolutionary algorithms. Neurocomputing 146(1):75–82

    Google Scholar 

  2. Booker LB, Goldberg DE, Holland JH (1989) Classifier systems and genetic algorithms. Artif Intell 40:235–282. https://doi.org/10.1016/0004-3702(89)90050-7

    Article  Google Scholar 

  3. Chunru D, Ng WWY, Wang X et al (2014) An improved differential evolution and its application to determining feature weights in similarity-based clustering. Neurocomputing 146:95–103

    Article  Google Scholar 

  4. Colorni A, Dorigo M, Maniezzo V (1992) Distributed optimization by ant colonies. In: From Anim Animat, pp 134–142

  5. Cui L, Li GH, Wang XZ, Lin QZ, Chen JY, Lu N, Lu J (2017) A ranking-based adaptive artificial bee colony algorithm for global numerical optimization. Inf Sci 417:169–185. https://doi.org/10.1016/j.ins.2017.07.011

    Article  Google Scholar 

  6. Cui LZ, Li GH, Lin QZ, Du ZH, Gao WF, Chen JY, Lu N (2016) A novel artificial bee colony algorithm with depth-first search framework and elite-guided search equation. Inf Sci 367:1012–1044. https://doi.org/10.1016/j.ins.2016.07.022

    Article  Google Scholar 

  7. Cui LZ et al (2017) A novel artificial bee colony algorithm with an adaptive population size for numerical function optimization. Inf Sci 414:53–67. https://doi.org/10.1016/j.ins.2017.05.044

    Article  MathSciNet  Google Scholar 

  8. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  9. Gao WF, Liu SY (2012) A modified artificial bee colony algorithm. Comput Oper Res 39:687–697. https://doi.org/10.1016/j.cor.2011.06.007

    Article  MATH  Google Scholar 

  10. Gao WF, Liu SY, Huang LL (2013) A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans Cybern 43:1011–1024. https://doi.org/10.1109/Tsmcb.2012.2222373

    Article  Google Scholar 

  11. Gunduz M, Kiran MS, Ozceylan E (2015) A hierarchic approach based on swarm intelligence to solve the traveling salesman problem. Turk J Electr Eng Computer Sci 23:103–117. https://doi.org/10.3906/elk-1210-147

    Article  Google Scholar 

  12. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge

    MATH  Google Scholar 

  13. Holland JH (1992) Genetic algorithms. Sci Am 267:66–72

    Article  Google Scholar 

  14. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  15. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697. https://doi.org/10.1016/j.asoc.2007.05.007

    Article  Google Scholar 

  16. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: 1995 IEEE international conference on neural networks proceedings, vols 1–6, pp 1942–1948. https://doi.org/10.1109/Icnn.1995.488968

  17. Kiran MS (2015) TSA: tree-seed algorithm for continuous optimization. Expert Syst Appl 42:6686–6698. https://doi.org/10.1016/j.eswa.2015.04.055

    Article  Google Scholar 

  18. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  MATH  Google Scholar 

  19. Li GH, Cui LZ, Fu XH, Wen ZK, Lu N, Lu J (2017) Artificial bee colony algorithm with gene recombination for numerical function optimization. Appl Soft Comput 52:146–159. https://doi.org/10.1016/j.asoc.2016.12.017

    Article  Google Scholar 

  20. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10:281–295. https://doi.org/10.1109/Tevc.2005.857610

    Article  Google Scholar 

  21. Locatelli M, Maischberger M, Schoen F (2014) Differential evolution methods based on local searches. Comput Oper Res 43:169–180. https://doi.org/10.1016/j.cor.2013.09.010

    Article  MATH  Google Scholar 

  22. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11:1679–1696. https://doi.org/10.1016/j.asoc.2010.04.024

    Article  Google Scholar 

  23. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evolut Comput 8:204–210. https://doi.org/10.1109/tevc.2004.826074

    Article  Google Scholar 

  24. Mernik M, Liu SH, Karaboga D, Crepinsek M (2015) On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation. Inf Sci 291:115–127. https://doi.org/10.1016/j.ins.2014.08.040

    Article  MathSciNet  MATH  Google Scholar 

  25. Moore PW, Venayagamoorthy GK (2006) Empirical study of an unconstrained modified particle swarm optimization. In: 2006 IEEE congress on evolutionary computation, vols 1–6, p 1462

  26. Muthiah-Nakarajan V, Noel MM (2016) Galactic swarm optimization: a new global optimization metaheuristic inspired by galactic motion. Appl Soft Comput 38:771–787. https://doi.org/10.1016/j.asoc.2015.10.034

    Article  Google Scholar 

  27. Nasir M, Das S, Maity D, Sengupta S, Halder U, Suganthan PN (2012) A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf Sci 209:16–36. https://doi.org/10.1016/j.ins.2012.04.028

    Article  MathSciNet  Google Scholar 

  28. Parouha RP, Das KN (2016) A memory based differential evolution algorithm for unconstrained optimization. Appl Soft Comput 38:501–517. https://doi.org/10.1016/j.asoc.2015.10.022

    Article  Google Scholar 

  29. Parsopoulos KE, Tasoulis DK, Vrahatis MN (2004) Multiobjective optimization using parallel vector evaluated particle swarm optimization. In: Proceedings of the iasted international conference on artificial intelligence and applications, vols 1 and 2, pp 823–828

  30. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13:398–417. https://doi.org/10.1109/Tevc.2008.927706

    Article  Google Scholar 

  31. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  32. Sharma H, Bansal JC, Arya KV (2012) Fitness based differential evolution. Memet Comput 4:303–316. https://doi.org/10.1007/s12293-012-0096-9

    Article  Google Scholar 

  33. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  34. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31:153–171. https://doi.org/10.1016/j.asoc.2015.03.003

    Article  Google Scholar 

  35. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm with multi-light source for numerical optimization and applications. Biosystems 138:25–38. https://doi.org/10.1016/j.biosystems.2015.11.004

    Article  Google Scholar 

  36. Xizhao W, He Q, Chen D, Yeung D (2005) A genetic algorithm for solving the inverse problem of support vector machines. Neurocomputing 68:225–238

    Article  Google Scholar 

  37. Yang XS (2010) A new metaheuristic bat-inspired algorithm Nicso 2010. In: Nature inspired cooperative strategies for optimization, vol 284, pp 65–74

  38. Zhang JQ, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13:945–958. https://doi.org/10.1109/Tevc.2009.2014613

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Kaya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, E., Uymaz, S.A. & Kocer, B. Boosting galactic swarm optimization with ABC. Int. J. Mach. Learn. & Cyber. 10, 2401–2419 (2019). https://doi.org/10.1007/s13042-018-0878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-018-0878-6

Keywords