Skip to main content
Log in

A fast decision making method for mandatory lane change using kernel extreme learning machine

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Lane change maneuver on the highway is a complicated process. A quick and accurate decision for the maneuver is very important for a safe driving. This paper proposes a K-ELM (kernel extreme learning machine) based decision making method for mandatory lane changes. In this method, multiple driving variables that are essential for an accurate lane change are extracted and used as the inputs of an established K-ELM network to generate the right lane-changing decision. The K-ELM network is trained using a tenfold cross-validating approach with the vehicle trajectory data from the NGSIM (next generation simulation) data set on U.S. Highway 101 and Interstate 80. Simulation results demonstrate that the proposed method can generate the lane-changing decision with a 92.86% accuracy for merge events and a 94.36% accuracy for non-merge events. Compared with both the ELM and the SVM method, the proposed method is more accurate and faster in decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Toledo T, Koutsopoulos H, Ben-Akiva M (2003) Modeling integrated lane-changing behavior. Transp Res Rec J Transp Res Board 1857:30–38

    Article  Google Scholar 

  2. Drew DR, LaMotte LR, Wattleworth JA et al (1967) Gap acceptance in the freeway merging process. Highw Res Rec 208:36

    Google Scholar 

  3. Gipps PG (1986) A model for the structure of lane-changing decisions. Transp Res Part B Methodol 20(5):403–414

    Article  Google Scholar 

  4. Wiedemann R, Reiter U (1992) Microscopic traffic simulation: the simulation system MISSION, background and actual state. Proj ICARUS (V1052) Final Rep 2:1–53

    Google Scholar 

  5. Yang Q, Koutsopoulos HN (1996) A microscopic traffic simulator for evaluation of dynamic traffic management systems. Transp Res Part C Emerg Technol 4(3):113–129

    Article  Google Scholar 

  6. Sukthankar R, Baluja S, Hancock J (1997) Evolving an intelligent vehicle for tactical reasoning in traffic. In: Robotics and Automation, 1997. Proceedings., 1997 IEEE international conference on IEEE, vol 1, pp 519–524

  7. Brackstone M, McDonald M, Wu J (1998) Lane changing on the motorway: factors affecting its occurrence, and their implications. In: Road transport information and control, 1998. 9th International conference on (Conf. Publ. no. 454). IET, pp 160–164

  8. Hidas P (2005) Modelling vehicle interactions in microscopic simulation of merging and weaving. Transp Res Part C Emerg Technol 13(1):37–62

    Article  Google Scholar 

  9. Schlenoff C, Madhavan R, Kootbally Z (2006) PRIDE: a hierarchical, integrated prediction framework for autonomous on-road driving. In: Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE international conference on IEEE, pp 2348–2353

  10. Toledo T, Koutsopoulos HN, Ben-Akiva M (2007) Integrated driving behavior modeling. Transp Res Part C Emerg Technol 15(2):96–112

    Article  Google Scholar 

  11. Dou Y, Yan F, Feng D (2016) Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers. In: Advanced intelligent mechatronics (AIM), 2016 IEEE international conference on IEEE, pp 901–906

  12. Rahman M, Chowdhury M, Xie Y et al (2013) Review of microscopic lane-changing models and future research opportunities. IEEE Trans Intell Transp Syst 14(4):1942–1956

    Article  Google Scholar 

  13. Moridpour S, Sarvi M, Rose G (2010) Lane changing models: a critical review. Transp Lett 2(3):157–173

    Article  Google Scholar 

  14. Ahmed KL, Ben-Akiva M, Koutsopoulos H et al (1996) Models of freeway lane changing and gap acceptance behavior. Transp Traffic Theory 13:501–515

    Google Scholar 

  15. Sharma A, Paliwal KK, Imoto S et al (2014) A feature selection method using improved regularized linear discriminant analysis. Mach Vis Appl 25(3):775–786

    Article  Google Scholar 

  16. Sharma A, Paliwal KK, Imoto S et al (2013) Principal component analysis using QR decomposition. Int J Mach Learn Cybern 4(6):679–683

    Article  Google Scholar 

  17. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  18. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  19. Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. Cogn Model 5(3):1

    MATH  Google Scholar 

  20. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  21. Bartlett PL (1998) The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory 44(2):525–536

    Article  MathSciNet  Google Scholar 

  22. Huang GB, Zhou H, Ding X et al (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybernetics) 42(2):513–529

    Article  Google Scholar 

  23. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  24. Sharma A, Paliwal KK (2015) Linear discriminant analysis for the small sample size problem: an overview. Int J Mach Learn Cybern 6(3):443–454

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 61573075) and the Project of Standardization and New Model for Intelligent Manufacture (Grant no. 2016ZXFB06002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senlin Cheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Xu, Y., Zong, R. et al. A fast decision making method for mandatory lane change using kernel extreme learning machine. Int. J. Mach. Learn. & Cyber. 10, 3363–3369 (2019). https://doi.org/10.1007/s13042-019-00923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-019-00923-8

Keywords

Navigation