Skip to main content

Advertisement

Log in

Exploring of alternative representations of facial images for face recognition

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Description and classification of face images is a significant task of computer vision, machine learning and pattern recognition communities. In the past, researchers have made tremendous efforts in this task. Previous researchers always seek high-resolution face images for better image classification. However, with this paper, we present and demonstrate a new opinion that in some cases the use of alternative representations of facial images are very useful for face recognition and properly reducing the image resolution might be beneficial to better classification of face images. This may be attributed to the deformable property of faces and the fact that the proposed alternative representations can in some extent reduce the within-class difference of facial images. Also, the presented idea appear to be useful for helping people to improve face recognition techniques in real worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kan M, Wu J, Shan S, Chen X (2014) Domain adaptation for face recognition: targetize source domain bridged by common subspace. Int J Comput Vis 109(1–2):94–109

    Article  MATH  Google Scholar 

  2. Kim SG, Chang DY (2009) Underdetermined blind source separation based on subspace representation. IEEE Trans Signal Process 57(7):2604–2614

    Article  MathSciNet  MATH  Google Scholar 

  3. Fan Z, Xu Y, Zuo W, Yang J, Tang J, Lai Z, Zhang D (2017) Modified principal component analysis: an integration of multiple similarity subspace models. IEEE Trans Neural Netw Learn Syst 25(8):1538–1552

    Article  Google Scholar 

  4. Lai Z, Mo D, Wen J, Shen L, Wong WK (2018) Generalized robust regression for jointly sparse subspace learning. IEEE Trans Circuits Syst Video Technol 29(3):756–772

    Article  Google Scholar 

  5. Li Z, Zhang Z, Qin J, Zhang Z, Shao L (2020) Discriminative fisher embedding dictionary learning algorithm for object recognition. IEEE Trans Neural Netw Learn Syst 31(3):786–800

    Article  MathSciNet  Google Scholar 

  6. Zhang Z, Yan S, Zhao M (2014) Similarity preserving low-rank representation for enhanced data representation and effective subspace learning. Neural Netw 53(5):81–94

    Article  MATH  Google Scholar 

  7. Xu Y, Zhong A, Yang J, Zhang D (2010) Lpp solution schemes for use with face recognition. Pattern Recognit 43(12):4165–4176

    Article  MATH  Google Scholar 

  8. Mi J, Zhu Q, Lu J (2019) Principal component analysis based on block-norm minimization. Appl Intell 49(6):2169–2177

    Article  Google Scholar 

  9. Mi J, Zhang Y, Lai Z, Li W, Zhou L, Zhong F (2019) Principal component analysis based on nuclear norm minimization. Neural Netw 118:1–16

    Article  MATH  Google Scholar 

  10. Mansano A, Matsuoka JA, Afonso LCS, Papa JP, Faria F, Torres RDS (2012) Improving image classification through descriptor combination. In: Sibgrapi conference on graphics

  11. Yong X, Zhu X, Li Z, Liu G, Lu Y, Hong L (2013) Using the original and ’symmetrical face’ training samples to perform representation based two-step face recognition. Pattern Recognit 46(4):1151–1158

    Article  Google Scholar 

  12. Shuai W, Jian C (2014) ‘Symmetrical face’ based improved lpp method for face recognition. Opt Int J Light Electron Opt 125(14):3530–3533

    Article  Google Scholar 

  13. Xu Y, Li X, Yang J, Zhang D (2014) Integrate the original face image and its mirror image for face recognition. Neurocomputing 131(7):191–199

    Article  Google Scholar 

  14. Wen X, Jie W (2016) Improved the minimum squared error algorithm for face recognition by integrating original face images and the mirror images. Opt Int J Light Electron Opt 127(2):883–889

    Article  Google Scholar 

  15. Xu Y, Li X, Yang J, Lai Z, Zhang D (2014) Integrating conventional and inverse representation for face recognition. IEEE Trans Cybernet 44(10):1738–1746

    Article  Google Scholar 

  16. Sanderson C, Paliwal KK (2003) Noise compensation in a person verification system using face and multiple speech features. Pattern Recognit 36(2):293–302

    Article  Google Scholar 

  17. Wang Y, Min W, Yan C, Qi Z (2014) A novel virtual samples-based sparse representation method for face recognition. Opt Int J Light Electron Opt 125(15):3908–3912

    Article  Google Scholar 

  18. Ryu YS, Oh SY (2002) Simple hybrid classifier for face recognition with adaptively generated virtual data. Pattern Recognit Lett 23(7):833–841

    Article  MATH  Google Scholar 

  19. Xu Y, Zhang B, Zhong Z (2015) Multiple representations and sparse representation for image classification. Pattern Recognit Lett 68:9–14

    Article  Google Scholar 

  20. Mi J, Fu Q, Li W (2017) Adaptive class preserving representation for image classification, pp 2624–2632

  21. Lai Z, Xu Y, Yang J, Shen L, Zhang D (2016) Rotational invariant dimensionality reduction algorithms. IEEE Trans Cybern 47(11):3733–3746

    Article  Google Scholar 

  22. Gao W, Shan S, Chai X, Fu X (2003) Virtual face image generation for illumination and pose insensitive face recognition. In: Proceedings of 2003 international conference on multimedia and expo, ICME’03 (Cat. No. 03TH8698), IEEE. vol 3, p 149

  23. Thian NPH, Marcel S, Bengio S (2003) Improving face authentication using virtual samples. In: Proceedings of 2003 IEEE international conference on acoustics, speech, and signal processing, 2003 (ICASSP’03), IEEE. vol 3, p 233

  24. Tang B, Luo S, Hua H (2004) High performance face recognition system by creating virtual sample. In: International conference on neural networks & signal processing

  25. Shi X, Yang Y, Guo Z, Lai Z (2014) Face recognition by sparse discriminant analysis via joint l2,1-norm minimization. Pattern Recognit 47(7):2447–2453

    Article  Google Scholar 

  26. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  27. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  28. Liu T, Mi J, Liu Y, Li C (2016) Robust face recognition via sparse boosting representation. Neurocomputing 214:944–957

    Article  Google Scholar 

  29. Lai Z, Xu Y, Yang J, Tang J, Zhang D (2013) Sparse tensor discriminant analysis. IEEE Trans Image Process 22(10):3904–3915

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  MathSciNet  Google Scholar 

  31. Zhang Z, Xu Y, Yang J, Li X, Zhang D (2017) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530

    Article  Google Scholar 

  32. Lei Z, Meng Y, Feng X (2012) Sparse representation or collaborative representation: which helps face recognition? In: International conference on computer vision

  33. Xu Y, Fang X, Li X, Yang J, You J, Liu H, Teng S (2014) Data uncertainty in face recognition. IEEE Trans Cybern 44(10):1950–1961

    Article  Google Scholar 

  34. Shi Q, Eriksson A, Hengel AVD, Shen C (2011) Is face recognition really a compressive sensing problem? In: Computer vision & pattern recognition

  35. Xu Y, Zhu Q, Fan Z, Zhang D, Mi J, Lai Z (2013) Using the idea of the sparse representation to perform coarse-to-fine face recognition. Inf Sci 238(7):138–148

    Article  MathSciNet  Google Scholar 

  36. Yu C, Jin Z, Chen H, Zhang Y, Yin X (2016) A fast and robust face recognition approach combining gabor learned dictionaries and collaborative representation. Int J Mach Learn Cybernet 7(1):47–52

    Article  Google Scholar 

  37. Song Z, Cui K, Cheng G (2020) Image set face recognition based on extended low rank recovery and collaborative representation. Int J Mach Learn Cybern 11:71–80

    Article  Google Scholar 

  38. Cai S, Lei Z, Zuo W, Feng X (2016) A probabilistic collaborative representation based approach for pattern classification. In: IEEE conference on computer vision & pattern recognition

  39. Zhu P, Zhang L, Hu Q, Shiu SCK (2012) Multi-scale patch based collaborative representation for face recognition with margin distribution optimization. In: European conference on computer vision

  40. Yang M, Zhang D, Wang S (2012) Relaxed collaborative representation for pattern classification. In: IEEE conference on computer vision & pattern recognition

  41. Xu Y, Zhu Q, Chen Y, Pan J-S et al (2013) An improvement to the nearest neighbor classifier and face recognition experiments. Int J Innov Comput Inf Control 9(2):543–554

    Google Scholar 

  42. Kim SJ, Koh K, Lustig M, Boyd S, Gorinevsky D (2008) An interior-point method for large-scale l1-regularized least squares. IEEE J Sel Top Signal Process 1(4):606–617

    Article  Google Scholar 

  43. Zouari M, Masmoudi AD, Masmoudi DS (2014) A non linear stretching image enhancement technique for microcalcification detection. In: 2014 1st international conference on advanced technologies for signal and image processing (ATSIP). IEEE, pp 193–197

  44. Dan C, Qi Z, Hui W, Feng S (2015) A novel color image contrast enhancement algorithm using saturation-lightness combined stretching in the hsl color space for amoled applications. In: IEEE international conference on solid-state & integrated circuit technology

  45. Nagaoka T, Nakamura A, Aizawa K, Kanazawa M, Kezuka T, Miura M, Usui M, Ohtsubo S, Sota T (2007) Application of decorrelation stretching method to hyperspectral fundus image processing. Proc SPIE 6426:526–533

    Google Scholar 

  46. Karvelis PS, Fotiadis DI (2008) A region based decorrelation stretching method: application to multispectral chromosome image classification. In: IEEE international conference on image processing

  47. http://www.face-rec.org/databases/

  48. http://www.itl.nist.gov/iad/humanid/feret/

  49. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Download references

Acknowledgements

This work is supported by Major Research Program of the National Natural Science Foundation of China under Grant No.91746116, the Major Applied Basic Research Program of Guizhou Province under Grant No. JZ20142001 and the Major Special Science and Technology Projects of Guizhou Province under Grant No. [2017]3002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Sun, L. & Xu, Y. Exploring of alternative representations of facial images for face recognition. Int. J. Mach. Learn. & Cyber. 11, 2289–2295 (2020). https://doi.org/10.1007/s13042-020-01116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01116-4

Keywords