Skip to main content
Log in

Adaptive super-twisting sliding mode control for micro gyroscope based on double loop fuzzy neural network structure

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, a new adaptive super-twisting sliding mode control (STSMC) scheme based on a double loop fuzzy neural network (DLFNN) is proposed to solve the problem of the external disturbances and approximate the unknown model for a micro gyroscopes. The STSMC algorithm can effectively suppress chattering since it can hide the high-frequency switching part in the high-order derivative of the sliding mode variable and transfer the discrete control law to the high-order sliding mode surface. Because it not only combines the advantages of fuzzy systems, but also incorporates the advantages of neural network control, the proposed double loop fuzzy neural network can better approximate the system model with excellent approximation. Moreover, it has the advantage of full adjustment, and the initial values of all parameters in the network can be arbitrarily set, then the parameters can be adjusted to the optimal stable value adaptively according to the adaptive algorithm. Finally, the superiority of the STSMC algorithm is also discussed. Simulation results verify the superiority of the STSMC algorithm, showing it can improve system performance and estimate unknown models more accurately compared with conventional neural network sliding mode control (CNNSMC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. He C, Zhao Q, Huang Q, Yang Z, Zhang D, Yan G (2015) A MEMS vibratory gyroscope with real-time mode-matching and robust control for the sense mode. IEEE Sens J 15(4):2069–2077

    Article  Google Scholar 

  2. Fang Y, Fei J, Yang Y (2018) Adaptive backstepping design of a microgyroscope. Micromachines 9(7):338

    Article  Google Scholar 

  3. Fei J, Lu C (2018) Adaptive fractional order sliding mode controller with neural estimator. J Franklin Inst 355(5):2369–2391

    Article  MathSciNet  Google Scholar 

  4. Xia D, Hu Y, Ni P (2016) A digitalized gyroscope system based on a modified adaptive control method. Sensors 16(3):321

    Article  Google Scholar 

  5. Fei J, Liang X (2018) Adaptive backstepping fuzzy-neural-network fractional order control of microgyroscope using nonsingular terminal sliding mode controller. Complexity. https://doi.org/10.1155/2018/5246074

    Article  MATH  Google Scholar 

  6. Rahmani M (2018) MEMS gyroscope control using a novel compound robust control. ISA Trans 72:37–43

    Article  Google Scholar 

  7. Ren J, Zhang R, Xu B (2016) Adaptive fuzzy sliding mode control of MEMS gyroscope with finite time convergence. J Sens. https://doi.org/10.1155/2016/1572303

    Article  Google Scholar 

  8. Fei J, Zhou J (2012) Robust adaptive control of MEMS triaxial gyroscope using fuzzy compensator. IEEE Trans Syst Man Cybernetics Part B Cybernetics 42(6):1599–1607

    Article  Google Scholar 

  9. Rahmani M, Komijani H, Ghanbari A, Ettafagh.M M, (2018) Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm. Microsyst Technol 24(11):1–12

    Google Scholar 

  10. Feng Z, Fei J (2018) Design and analysis of adaptive super-twisting sliding mode control for a microgyroscope. PLoS ONE 13(1):e0189457. https://doi.org/10.1371/journal.pone.0189457

    Article  Google Scholar 

  11. Chalanga A, Kamal S, Fridman LM, Bandyopadhyay B, Moreno JA (2016) Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans Indus Electr 63(6):3677–3685

    Article  Google Scholar 

  12. Utkin V (2013) On convergence time and disturbance rejection of super-twisting control. IEEE Trans Autom Control 58(8):2013–2017

    Article  MathSciNet  Google Scholar 

  13. Sadeghi R, Madani SM, Ataei M, Kashkooli MRA, Ademi S (2018) Super-twisting sliding mode direct power control of brushless doubly fed induction generator. IEEE Trans Industr Electron 65(11):9147–9156

    Article  Google Scholar 

  14. Zhao Z, Gu H, Zhang J, Ding G (2017) Terminal sliding mode control based on super-twisting algorithm. J Syst Eng Electr 28(1):145–150

    Google Scholar 

  15. Kumar PR, Behera AK, Bandyopadhyay B (2017) Robust finite-time tracking of stewart platform: a super-twisting like observer-based forward kinematics solution. IEEE Trans Industr Electron 64(5):3776–3785

    Article  Google Scholar 

  16. Seeber R, Horn M, Fridman L (2018) A novel method to estimate the reaching time of the super-twisting algorithm. IEEE Trans Autom Control 63(12):4301–4308

    Article  MathSciNet  Google Scholar 

  17. Vidal PVNM, Nunes EVL, Liu H (2017) Output-feedback multivariable global variable gain super-twisting algorithm. IEEE Trans Autom Control 62(6):2999–3005

    Article  MathSciNet  Google Scholar 

  18. Li J, Zhang Q, Yan XG, Spurgeon SK (2016) Integral sliding mode control for Markovian jump T-S fuzzy descriptor systems based on the super-twisting algorithm. IET Control Theory Appl 11(8):1134–1143

    Article  MathSciNet  Google Scholar 

  19. Evangelista C, Puleston P, Valenciaga F, Fridman LM (2013) Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization. IEEE Trans Industr Electron 60(2):538–545

    Article  Google Scholar 

  20. Wang Y, Yan F, Chen J, Chen B (2018) Continuous Nonsingular Fast Terminal Sliding Mode Control of Cable-Driven Manipulators With Super-Twisting Algorithm[J]. IEEE Access 6:49626–49636

    Article  Google Scholar 

  21. Fei, J. Feng Z (2019) Adaptive fuzzy super-twisting sliding mode control for microgyroscope, complexity. vol. 2019, Article ID 6942642, pp 13

  22. El-Sousy M, Abuhasel A (2018) Adaptive nonlinear disturbance observer using double loop self-organizing recurrent wavelet-neural-network for two-axis motion control system. IEEE Trans Ind Appl 54(1):764–786

    Article  Google Scholar 

  23. Sivakumar S, Sivakumar S (2018) Marginally stable triangular recurrent neural network architecture for time series prediction. IEEE Trans Cybern 48(10):2836–2850

    Article  Google Scholar 

  24. Pratama M, Lu J, Lughofer E, Zhang G, Meng JE (2017) An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst 25(5):1175–1192

    Article  Google Scholar 

  25. Wai RJ, Chen MW, Liu YK (2015) Design of adaptive control and fuzzy neural network control for single-stage boost inverter. IEEE Trans Power Electron 30(12):7282–7298

    Article  Google Scholar 

  26. Hou S, Fei J (2019) A self-organizing global sliding mode control and its application to active power filter. IEEE Trans Power Electron. https://doi.org/10.1109/TPEL.2019.29580512019

    Article  Google Scholar 

  27. Fei J, Chu Y (2020) Double hidden layer recurrent neural adaptive global sliding mode control of active power filter. IEEE Trans Power Electr 35(3):3069–3084

    Article  Google Scholar 

  28. Fei J, Chen Y (2020) Dynamic terminal sliding mode control for single-phase active power filter using double hidden layer recurrent neural network. IEEE Trans Power Electron 35(9):9906–9924. https://doi.org/10.1109/TPEL.2020.2974470

    Article  Google Scholar 

  29. Fei J, Wang H (2019) Experimental investigation of recurrent neural network fractional-order sliding mode control for active power filter. IEEE Trans Circ Syst II-Exp Briefs. https://doi.org/10.1109/TCSII.2019.2953223

    Article  Google Scholar 

  30. Fang Y, Fei J, Cao D (2019) Adaptive fuzzy-neural fractional-order current control of active power filter with finite-time sliding controller. Intern J Fuzzy Syst 21(5):1533–1543

    Article  MathSciNet  Google Scholar 

  31. Zhu Y, Fei J (2018) Disturbance observer based fuzzy sliding mode control of pv grid connected inverter. IEEE Access 6:21202–21211

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Science Foundation of China under Grant No. 61873085; Natural Science Foundation of Jiangsu Province under Grant No. BK20171198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Fei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, J., Feng, Z. Adaptive super-twisting sliding mode control for micro gyroscope based on double loop fuzzy neural network structure. Int. J. Mach. Learn. & Cyber. 12, 611–624 (2021). https://doi.org/10.1007/s13042-020-01191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-020-01191-7

Keywords

Navigation