Abstract
Network intrusion detection systems (IDSs) based on deep learning have reached fairly accurate attack detection rates. But these deep learning approaches usually have been performed in a closed-set protocol that only known classes appear in training are considered during classification, the existing IDSs will fail to detect the unknown attacks and misclassify them as the training known classes, hence are not scalable. Furthermore, these IDSs are not efficient for updating the deep detection model once new attacks are discovered. To address those problems, we propose a scalable IDS towards detecting, discovering, and learning unknown attacks, it has three components. Firstly, we propose the open-set classification network (OCN) to detect unknown attacks, OCN based on the convolutional neural network adopts the nearest class mean (NCM) classifier, two new loss are designed to jointly optimize it, including Fisher loss and maximum mean discrepancy (MMD) loss. Subsequently, the semantic embedding clustering method is proposed to discover the hidden unknown attacks from all unknown instances detected by OCN. Then we propose the incremental nearest cluster centroid (INCC) method for learning the discovered unknown attacks through updating the NCM classifier. Extensive experiments on KDDCUP’99 dataset and CICIDS2017 dataset indicate that our OCN outperforms the state-of-the-art comparison methods in detecting multiple types of unknown attacks. Our experiments also verify the feasibility of the semantic embedding clustering method and INCC in discovering and learning unknown attacks.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Karatas G, Demir O, Sahingoz OK (2018) Deep learning in intrusion detection systems. In: 2018 International congress on big data, deep learning and fighting cyber terrorism (IBIGDELFT), IEEE, pp 113–116
Buczak AL, Guven E (2016) A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutor 18(2):1153–1176
Rudd EM, Rozsa A, Günther M et al (2017) A survey of stealth malware: attacks, mitigation measures, and steps toward autonomous open world solutions. IEEE Commun Surv Tutor 19(2):1145–1172
Scheirer WJ, de Rezende Rocha A, Sapkota A, Boult TE (2013) Toward open set recognition. IEEE Trans Pattern Anal Mach Intell 35(7):1757–1772
Bendale A, Boult T (2015) Towards open world recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1893–1902
Miller D, Sünderhauf N, Milford M et al (2020) Class anchor clustering: a distance-based loss for training open set classifiers. arXiv preprint arXiv:2004.02434
Geng C, Huang S, Chen S (2020) Recent advances in open set recognition: a survey. IEEE Trans Pattern Anal Mach Intell, early access. https://doi.org/10.1109/TPAMI.2020.2981604
Rudd EM, Jain LP, Scheirer WJ et al (2017) The extreme value machine. IEEE Trans Pattern Anal Mach Intell 40(3):762–768
Jain LP, Scheirer WJ, Boult TE (2014) Multi-class open set recognition using probability of inclusion. In: European conference on computer vision, Springer, Cham, pp 393–409
Henrydoss J, Cruz S, Rudd EM et al (2017) Incremental open set intrusion recognition using extreme value machine. In: 2017 16th IEEE international conference on machine learning and applications (ICMLA), IEEE, pp 1089–1093
Cruz S, Coleman C, Rudd EM et al (2017) Open set intrusion recognition for fine-grained attack categorization. In: 2017 IEEE international symposium on technologies for homeland security (HST), IEEE, pp 1–6
Hubballi N, Suryanarayanan V (2014) False alarm minimization techniques in signature-based intrusion detection systems: a survey. Comput Commun 49:1–17
Agarwal M, Pasumarthi D, Biswas S et al (2016) Machine learning approach for detection of flooding DoS attacks in 802.11 networks and attacker localization. Int J Mach Learn Cybern 7(6):1035–1051
Ashfaq RAR, He Y, Chen D (2017) Toward an efficient fuzziness based instance selection methodology for intrusion detection system. Int J Mach Learn Cybern 8(6):1767–1776
Yan Q, Wang M, Huang W et al (2019) Automatically synthesizing DoS attack traces using generative adversarial networks. Int J Mach Learn Cybern 10(12):3387–3396
Roopak M, Tian GY, Chambers J (2019) Deep learning models for cyber security in IoT networks. In: 2019 IEEE 9th annual computing and communication workshop and conference (CCWC), IEEE, pp 0452–0457
Zhang Y, Chen X, Jin L et al (2019) Network intrusion detection: based on deep hierarchical network and original flow data. IEEE Access 7:37004–37016
Khan MA, Karim M, Kim Y (2019) A scalable and hybrid intrusion detection system based on the convolutional-LSTM network. Symmetry 11(4):583
Lin P, Ye K, Xu CZ (2019) Dynamic network anomaly detection system by using deep learning techniques. In: International conference on cloud computing, Springer, Cham, pp 161–176
Hendrycks D, Gimpel K (2016) A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136
Liang S, Li Y, Srikant R (2017) Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690
Shu L, Xu H, Liu B (2018) Unseen class discovery in open-world classification. arXiv preprint arXiv:1801.05609
Hsu YC, Lv Z, Schlosser J et al (2018) A probabilistic constrained clustering for transfer learning and image category discovery. arXiv preprint arXiv:1806.11078
Shmelkov K, Schmid C, Alahari K (2017) Incremental learning of object detectors without catastrophic forgetting. In: Proceedings of the IEEE international conference on computer vision, pp 3400–3409
Rebuffi SA, Kolesnikov A, Sperl G et al (2017) icarl: Incremental classifier and representation learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2001–2010
Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572
Sriperumbudur Bharath K, Kenji F, Arthur G, Lanckriet Gert RG, Scholkopf B (2009) Kernel choice and classifiability for RKHS embeddings of probability distributions. Adv Neural Inf Process Syst 22:1750–1758
Long M, Wang J (2015) Learning transferable features with deep adaptation networks. In: Proceedings of the 32nd international conference on machine learning (ICML), pp 97–105
Changpinyo S, Chao WL, Sha F (2017) Predicting visual exemplars of unseen classes for zero-shot learning. In: Proceedings of the IEEE international conference on computer vision, pp 3476–3485
Ester M, Kriegel, Hans-Peter, Sander J et al (1996) A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery & data mining (KDD'96), pp 226–231
Schubert E, Sander Jörg, Ester M et al (2017) DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans Database Syst 42(3):1–21
Mensink T, Verbeek J, Perronnin F et al (2013) Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans Pattern Anal Mach Intell 35(11):2624–2637
Zhang Y, Chen X, Guo D et al (2019) PCCN: parallel cross convolutional neural network for abnormal network traffic flows detection in multi-class imbalanced network traffic flows. IEEE Access 7:119904–119916
Long M, Zhu H, Wang J et al (2016) Deep transfer learning with joint adaptation networks. arXiv preprint arXiv:1605.06636
Yang Y, Xu D, Nie F et al (2010) Image clustering using local discriminant models and global integration. IEEE Trans Image Process 19(10):2761–2773
Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Q 2(1–2):83–97
Acknowledgements
This work is supported by National Key R&D Program of China under Grant No.2020YFC1522503.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, Z., Zhang, Y., Guo, D. et al. A scalable network intrusion detection system towards detecting, discovering, and learning unknown attacks. Int. J. Mach. Learn. & Cyber. 12, 1649–1665 (2021). https://doi.org/10.1007/s13042-020-01264-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-020-01264-7