Skip to main content
Log in

Ensemble of feature selection algorithms: a multi-criteria decision-making approach

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

For the first time, the ensemble feature selection is modeled as a Multi-Criteria Decision-Making (MCDM) process in this paper. For this purpose, we used the VIKOR method as a famous MCDM algorithm to rank the features based on the evaluation of several feature selection methods as different decision-making criteria. Our proposed method, EFS-MCDM, first obtains a decision matrix using the ranks of every feature according to various rankers. The VIKOR approach is then used to assign a score to each feature based on the decision matrix. Finally, a rank vector for the features generates as an output in which the user can select a desired number of features. We have compared our approach with some ensemble feature selection methods using feature ranking strategy and basic feature selection algorithms to illustrate the proposed method's optimality and efficiency. The results show that our approach in terms of accuracy, F-score, and algorithm run-time is superior to other similar methods and performs in a short time, and it is more efficient than the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rathore P, Kumar D, Bezdek JC et al (2019) A rapid hybrid clustering algorithm for large volumes of high dimensional data. IEEE Trans Knowl Data Eng 31:641–654. https://doi.org/10.1109/TKDE.2018.2842191

    Article  Google Scholar 

  2. Miao J, Niu L (2016) A survey on feature selection. In: Procedia computer science, pp 919–926

  3. Mlambo NWC (2016) A survey and comparative study of filter and wrapper feature selection techniques. Int J Eng Sci 5:57–67

    Google Scholar 

  4. Cai J, Luo J, Wang S, Yang S (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70–79. https://doi.org/10.1016/j.neucom.2017.11.077

    Article  Google Scholar 

  5. Li J, Cheng K, Wang S et al (2017) Feature selection: a data perspective. ACM Comput Surv. https://doi.org/10.1145/3136625

    Article  Google Scholar 

  6. Zhang R, Nie F, Li X, Wei X (2019) Feature selection with multi-view data: a survey. Inf Fusion 50:158–167. https://doi.org/10.1016/j.inffus.2018.11.019

    Article  Google Scholar 

  7. Dowlatshahi MB, Derhami V, Nezamabadi-pour H (2018) A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification. Informatics. https://doi.org/10.3390/informatics5010013

    Article  Google Scholar 

  8. Anaraki JR, Usefi H (2019) A feature selection based on perturbation theory. Expert Syst Appl 127:1–8. https://doi.org/10.1016/j.eswa.2019.02.028

    Article  Google Scholar 

  9. Hashemi A, Dowlatshahi MB (2020) MLCR: A Fast Multi-label Feature Selection Method Based on K-means and L2-norm. In: 2020 25th international computer conference, computer society of Iran (CSICC). IEEE, pp 1–7

  10. Hashemi A, Dowlatshahi MB, Nezamabadi-pour H (2020) MGFS: a multi-label graph-based feature selection algorithm via PageRank centrality. Expert Syst Appl 142:113024. https://doi.org/10.1016/j.eswa.2019.113024

    Article  Google Scholar 

  11. Hashemi A, Dowlatshahi MB, Nezamabadi-Pour H (2020) A bipartite matching-based feature selection for multi-label learning. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-020-01180-w

    Article  Google Scholar 

  12. Paniri M, Dowlatshahi MB, Nezamabadi-pour H (2019) MLACO: A multi-label feature selection algorithm based on ant colony optimization. Knowledge-Based Syst. https://doi.org/10.1016/j.knosys.2019.105285

    Article  Google Scholar 

  13. Bayati H, Dowlatshahi MB, Paniri M (2020) MLPSO: a filter multi-label feature selection based on particle swarm optimization. In: 2020 25th international computer conference, computer society of Iran (CSICC). IEEE, pp 1–6

  14. Bayati H, Dowlatshahi MB, Paniri M (2020) Multi-label feature selection based on competitive swarm optimization. J Soft Comput Inf Technol 9:56–69

    Google Scholar 

  15. Pereira RB, Plastino A, Zadrozny B, Merschmann LHC (2018) Categorizing feature selection methods for multi-label classification. Artif Intell Rev 49:57–78. https://doi.org/10.1007/s10462-016-9516-4

    Article  Google Scholar 

  16. Sheikhpour R, Sarram MA, Gharaghani S, Chahooki MAZ (2017) A Survey on semi-supervised feature selection methods. Pattern Recognit 64:141–158. https://doi.org/10.1016/j.patcog.2016.11.003

    Article  MATH  Google Scholar 

  17. Sheikhpour R, Sarram MA, Gharaghani S, Chahooki MAZ (2020) A robust graph-based semi-supervised sparse feature selection method. Inf Sci (Ny) 531:13–30. https://doi.org/10.1016/j.ins.2020.03.094

    Article  MathSciNet  MATH  Google Scholar 

  18. Solorio-Fernández S, Carrasco-Ochoa JA, Martínez-Trinidad JF (2020) A review of unsupervised feature selection methods. Artif Intell Rev. https://doi.org/10.1007/s10462-019-09682-y

    Article  Google Scholar 

  19. Lee J, Kim D-W (2015) Mutual Information-based multi-label feature selection using interaction information. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2014.09.063

    Article  Google Scholar 

  20. Reyes O, Morell C, Ventura S (2015) Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context. Neurocomputing. https://doi.org/10.1016/j.neucom.2015.02.045

    Article  Google Scholar 

  21. Kashef S, Nezamabadi-pour H, Nikpour B (2018) FCBF3Rules: a feature selection method for multi-label datasets, pp 1–5

  22. Venkatesh B, Anuradha J (2019) A review of feature selection and its methods. Cybern Inf Technol 19:3–26. https://doi.org/10.2478/CAIT-2019-0001

    Article  MathSciNet  Google Scholar 

  23. Darshan SLS, Jaidhar CD (2020) An empirical study to estimate the stability of random forest classifier on the hybrid features recommended by filter based feature selection technique. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-019-00978-7

    Article  Google Scholar 

  24. Tawhid MA, Ibrahim AM (2020) Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm. Int J Mach Learn Cybern 11:573–602. https://doi.org/10.1007/s13042-019-00996-5

    Article  Google Scholar 

  25. Bolón-Canedo V, Alonso-Betanzos A (2019) Ensembles for feature selection: a review and future trends. Inf Fusion 52:1–12. https://doi.org/10.1016/j.inffus.2018.11.008

    Article  Google Scholar 

  26. Dowlatshahi MB, Derhami V, Nezamabadi-Pour H (2017) Ensemble of filter-based rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset selection. Inf. https://doi.org/10.3390/info8040152

    Article  Google Scholar 

  27. Dowlatshahi MB, Rezaeian M (2016) Training spiking neurons with gravitational search algorithm for data classification. In: 1st conference on swarm intelligence and evolutionary computation, CSIEC 2016—Proceedings, pp 53–58

  28. Dowlatshahi MB, Nezamabadi-Pour H, Mashinchi M (2014) A discrete gravitational search algorithm for solving combinatorial optimization problems. Inf Sci (Ny) 258:94–107. https://doi.org/10.1016/j.ins.2013.09.034

    Article  MathSciNet  MATH  Google Scholar 

  29. Rafsanjani MK, Dowlatshahi MB (2012) using gravitational search algorithm for finding near-optimal base station location in two-tiered WSNs. Int J Mach Learn Comput. https://doi.org/10.7763/ijmlc.2012.v2.148

    Article  Google Scholar 

  30. Dowlatshahi MB, Derhami V, Nezamabadi-Pour H (2020) Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization. Iran J Fuzzy Syst 17:7–24. https://doi.org/10.22111/ijfs.2020.5403

    Article  MathSciNet  MATH  Google Scholar 

  31. Dowlatshahi MB, Derhami V (2019) Winner determination in combinatorial auctions using hybrid ant colony optimization and multi-neighborhood local search. J AI Data Min 5:169–181. https://doi.org/10.22044/jadm.2017.880

    Article  Google Scholar 

  32. Momeni E, Yarivand A, Dowlatshahi MB, Jahed Armaghani D (2020) An efficient optimal neural network based on gravitational search algorithm in predicting the deformation of geogrid-reinforced soil structures. Transp Geotech. https://doi.org/10.1016/j.trgeo.2020.100446

    Article  Google Scholar 

  33. Dowlatshahi MB, Nezamabadi-Pour H (2014) GGSA: a grouping gravitational search algorithm for data clustering. Eng Appl Artif Intell 36:114–121. https://doi.org/10.1016/j.engappai.2014.07.016

    Article  Google Scholar 

  34. Momeni E, Dowlatshahi MB, Omidinasab F et al (2020) Gaussian process regression technique to estimate the pile bearing capacity. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04683-4

    Article  Google Scholar 

  35. Rafsanjani MK, Dowlatshahi MB, Nezamabadi-Pour H (2015) Gravitational search algorithm to solve the K-of-N lifetime problem in two-tiered WSNs. Iran J Math Sci Inform 10:81–93. https://doi.org/10.7508/ijmsi.2015.01.006

    Article  MathSciNet  MATH  Google Scholar 

  36. Dowlatshahi MB, Derhami V, Nezamabadi-pour H (2019) Gravitational search algorithm with nearest-better neighborhood for multimodal optimization problems. J Soft Comput Inf Technol 8:10–19

    MATH  Google Scholar 

  37. Dowlatshahi MB, Derhami V, Professor A, Nezamabadi-pour H (2018) Gravitational locally informed particle swarm algorithm for solving multimodal optimization problems. Tabriz J Electr Eng 48:1131–1140

    Google Scholar 

  38. Patil MV, Kulkarni AJ (2020) Pareto dominance based Multiobjective Cohort Intelligence algorithm. Inf Sci (Ny) 538:69–118. https://doi.org/10.1016/j.ins.2020.05.019

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu Y, Zhu N, Li K et al (2020) An angle dominance criterion for evolutionary many-objective optimization. Inf Sci (Ny). https://doi.org/10.1016/j.ins.2018.12.078

    Article  MATH  Google Scholar 

  40. Hashemi A, Dowlatshahi MB, Nezamabadi-pour H (2020) MFS-MCDM: Multi-label feature selection using multi-criteria decision making. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2020.106365

    Article  Google Scholar 

  41. Zyoud SH, Fuchs-Hanusch D (2017) A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst Appl 78:158–181

    Article  Google Scholar 

  42. Hendiani S, Jiang L, Sharifi E, Liao H (2020) Multi-expert multi-criteria decision making based on the likelihoods of interval type-2 trapezoidal fuzzy preference relations. Int J Mach Learn Cybern 11:2719–2741. https://doi.org/10.1007/s13042-020-01148-w

    Article  Google Scholar 

  43. Chai J, Ngai EWT (2020) Decision-making techniques in supplier selection: recent accomplishments and what lies ahead. Expert Syst Appl 140

  44. Kim JH, Ahn BS (2019) Extended VIKOR method using incomplete criteria weights. Expert Syst Appl 126:124–132. https://doi.org/10.1016/j.eswa.2019.02.019

    Article  Google Scholar 

  45. Acuña-Soto CM, Liern V, Pérez-Gladish B (2019) A VIKOR-based approach for the ranking of mathematical instructional videos. Manag Decis 57:501–522. https://doi.org/10.1108/MD-03-2018-0242

    Article  Google Scholar 

  46. Ebrahimpour MK, Eftekhari M (2017) Ensemble of feature selection methods: a hesitant fuzzy sets approach. Appl Soft Comput J 50:300–312. https://doi.org/10.1016/j.asoc.2016.11.021

    Article  Google Scholar 

  47. Ansari G, Ahmad T, Doja MN (2019) Ensemble of feature ranking methods using hesitant fuzzy sets for sentiment classification. Int J Mach Learn Comput 9:599–608. https://doi.org/10.18178/ijmlc.2019.9.5.846

    Article  Google Scholar 

  48. Seijo-Pardo B, Porto-Díaz I, Bolón-Canedo V, Alonso-Betanzos A (2017) Ensemble feature selection: homogeneous and heterogeneous approaches. Knowl Based Syst 118:124–139. https://doi.org/10.1016/j.knosys.2016.11.017

    Article  Google Scholar 

  49. Drotár P, Gazda M, Vokorokos L (2019) Ensemble feature selection using election methods and ranker clustering. Inf Sci (Ny) 480:365–380. https://doi.org/10.1016/j.ins.2018.12.033

    Article  MathSciNet  MATH  Google Scholar 

  50. Das AK, Das S, Ghosh A (2017) Ensemble feature selection using bi-objective genetic algorithm. Knowl Based Syst 123:116–127. https://doi.org/10.1016/j.knosys.2017.02.013

    Article  Google Scholar 

  51. Wang H, He C, Li Z (2020) A new ensemble feature selection approach based on genetic algorithm. Soft Comput 24:15811–15820. https://doi.org/10.1007/s00500-020-04911-x

    Article  Google Scholar 

  52. Basir MA, Hussin MS, Yusof Y (2021) Ensemble feature selection method based on bio-inspired algorithms for multi-objective classification problem, pp 167–176

  53. Ng WWY, Tuo Y, Zhang J, Kwong S (2020) Training error and sensitivity-based ensemble feature selection. Int J Mach Learn Cybern 11:2313–2326. https://doi.org/10.1007/s13042-020-01120-8

    Article  Google Scholar 

  54. Alhamidi MR, Jatmiko W (2020) Optimal feature aggregation and combination for two-dimensional ensemble feature selection. Information 11:38. https://doi.org/10.3390/info11010038

    Article  Google Scholar 

  55. Yu W, Zhang Z, Zhong Q (2019) Consensus reaching for MAGDM with multi-granular hesitant fuzzy linguistic term sets: a minimum adjustment-based approach. Ann Oper Res. https://doi.org/10.1007/s10479-019-03432-7

    Article  MATH  Google Scholar 

  56. Liao H, Wu X (2020) DNMA: A double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega (United Kingdom). https://doi.org/10.1016/j.omega.2019.04.001

    Article  Google Scholar 

  57. Fei L, Deng Y (2020) Multi-criteria decision making in Pythagorean fuzzy environment. Appl Intell. https://doi.org/10.1007/s10489-019-01532-2

    Article  Google Scholar 

  58. Zhang Z, Gao Y, Li Z (2020) Consensus reaching for social network group decision making by considering leadership and bounded confidence. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2020.106240

    Article  Google Scholar 

  59. Zhang Z, Yu W, Martinez L, Gao Y (2020) Managing multigranular unbalanced hesitant fuzzy linguistic information in multiattribute large-scale group decision making: a linguistic distribution-based approach. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2019.2949758

    Article  Google Scholar 

  60. Bolón-Canedo V, Alonso-Betanzos A (2018) Evaluation of ensembles for feature selection. In: Intelligent Systems reference library, pp 97–113

  61. Kacprzak D (2019) A doubly extended TOPSIS method for group decision making based on ordered fuzzy numbers. Expert Syst Appl 116:243–254. https://doi.org/10.1016/j.eswa.2018.09.023

    Article  Google Scholar 

  62. Behzadian M, Khanmohammadi Otaghsara S, Yazdani M, Ignatius J (2012) A state-of the-art survey of TOPSIS applications. Expert Syst Appl 39:13051–13069

    Article  Google Scholar 

  63. Opricovic S (1998) Multicriteria optimization in civil engineering (in Serbian)

  64. Hwang C-L, Yoon K (1981) Methods for multiple attribute decision making, pp 58–191

  65. Çalı S, Balaman ŞY (2019) A novel outranking based multi criteria group decision making methodology integrating ELECTRE and VIKOR under intuitionistic fuzzy environment. Expert Syst Appl 119:36–50. https://doi.org/10.1016/j.eswa.2018.10.039

    Article  Google Scholar 

  66. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York, Sect 10:l

  67. Zeng H, Cheung YM (2011) Feature selection and kernel learning for local learning-based clustering. IEEE Trans Pattern Anal Mach Intell 33:1532–1547. https://doi.org/10.1109/TPAMI.2010.215

    Article  Google Scholar 

  68. Michalak K, Kwasnicka H (2010) Correlation based feature selection method. Int J Bio-Inspir Comput 2:319–332. https://doi.org/10.1504/IJBIC.2010.036158

    Article  MATH  Google Scholar 

  69. Bache, K. & Lichman M (2013) Repository, UCI machine learning. CA Univ. Calif, Irvine

  70. Shipp MA, Ross KN, Tamayo P et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8:68–74. https://doi.org/10.1038/nm0102-68

    Article  Google Scholar 

  71. Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with Gabor wavelets. In: Proceedings—3rd IEEE international conference on automatic face and gesture recognition, FG 1998, pp 200–205

  72. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: IEEE workshop on applications of computer vision—proceedings, pp 138–142

  73. Pomeroy SL, Tamayo P, Gaasenbeek M et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442. https://doi.org/10.1038/415436a

    Article  Google Scholar 

  74. Hastie T, Tibshirani R, Friedman J, Franklin J (2017) The elements of statistical learning: data mining, inference, and prediction. Math Intell. https://doi.org/10.1007/BF02985802

    Article  MATH  Google Scholar 

  75. Coakley CW, Conover WJ (2000) Practical nonparametric statistics. J Am Stat Assoc 95:332. https://doi.org/10.2307/2669565

    Article  Google Scholar 

  76. Zhang Z, Kou X, Yu W, Gao Y (2020) Consistency improvement for fuzzy preference relations with self-confidence: an application in two-sided matching decision making. J Oper Res Soc. https://doi.org/10.1080/01605682.2020.1748529

    Article  Google Scholar 

  77. Zhang Z, Gao J, Gao Y, Yu W (2020) Two-sided matching decision making with multi-granular hesitant fuzzy linguistic term sets and incomplete criteria weight information. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagher Dowlatshahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, A., Dowlatshahi, M.B. & Nezamabadi-pour, H. Ensemble of feature selection algorithms: a multi-criteria decision-making approach. Int. J. Mach. Learn. & Cyber. 13, 49–69 (2022). https://doi.org/10.1007/s13042-021-01347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01347-z

Keywords

Navigation