Skip to main content
Log in

Triple-G: a new MGRS and attribute reduction

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Different from classical rough set, Multigranulation Rough Set (MGRS) is frequently designed for approximating target through using multiple results of information granulation. Presently, though many forms of MGRS have been intensively explored, most of them are constructed based on the homogeneous information granulation with respect to different scales or levels. They lack the multi-view which involves the results of heterogeneous information granulation. To fill such a gap, a Triple-G MGRS is developed. Such a Triple-G is composed of three different heterogeneous information granulations: (1) neiGhborhood based information granulation; (2) Gap based information granulation; (3) Granular ball based information granulation. Neighborhood provides a parameterized mechanism while gap and granular ball offer two representative data-adaptive strategies for performing information granulation. Immediately, both optimistic and pessimistic MGRS can be re-constructed. Furthermore, the problem of attribute reduction is also addressed based on the proposed models. Not only the forward greedy searching is used for deriving the Triple-G MGRS related reducts, but also an attribute grouping based accelerator is reported for further speeding up the process of searching reducts. The experimental results over 20 UCI data sets demonstrate the follows: (1) from the viewpoint of the generalization performance, the reducts obtained by our Triple-G MGRS is superior to those obtained by previous researches; (2) attribute grouping does speed up the process of searching reducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–39

    Google Scholar 

  2. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inform Theory 13(1):21–27

    MATH  Google Scholar 

  3. Chen Y, Liu KY, Song JJ, Fujita H, Yang XB, Qian YH (2020) Attribute group for attribute reduction. Inform Sci 535:64–80

    MATH  Google Scholar 

  4. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach. Learn. Res 7(1):1–30

    MathSciNet  MATH  Google Scholar 

  5. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31(8):651–666

    Google Scholar 

  6. Jiang GX, Wang WJ (2017) Markov cross-validation for time series model evaluations. Inform Sci 375:219–233

    MATH  Google Scholar 

  7. Jiang ZH, Liu KY, Yang XB, Yu HL, Fujita H, Qian YH (2020) Accelerator for supervised neighborhood based attribute reduction. Int J Approx Reasoning 119:122–150

    MathSciNet  MATH  Google Scholar 

  8. Kong QZ, Xu WH (2019) The comparative study of covering rough sets and multi-granulation rough sets. Soft Comput 23:3237–3251

    MATH  Google Scholar 

  9. Kong QZ, Zhang XW, Xu WH, Xie ST (2020) Attribute reducts of multi-granulation information system. Artif Intell Rev 53:1353–1371

    Google Scholar 

  10. Hu QH, Yu DR, Xie ZX (2008) Neighborhood classifiers. Expert Syst Appl 34(2):866–876

    Google Scholar 

  11. Hu QH, Pedrycz W, Yu DR, Lang J (2010) Selecting discrete and continuous features based on neighborhood decision error minimization. IEEE Trans Syst Man Cybernet Part B-Cybernet 40(1):137–150

    Google Scholar 

  12. Jiang ZH, Yang XB, Yu HL, Liu D, Wang PX, Qian YH (2019) Accelerator for multi-granularity attribute reduction. Knowl-Based Syst 177:145–158

    Google Scholar 

  13. Jiang ZH, Liu KY, Song JJ, Yang XB, Li JH, Qian YH (2021) Accelerator for crosswise computing reduct. Appl Soft Comput 98:106740

  14. Ju HR, Ding WP, Yang XB, Fujita H, Xu SP (2021) Robust supervised rough granular description model with the principle of justifiable granularity. Appl Soft Comput 110:107612

  15. Ju HR, Pedrycz W, Li HX, Ding WP, Yang XB, Zhou XZ (2019) Sequential three-way classifier with justifiable granularity. Knowl-Based Syst 163:103–119

    Google Scholar 

  16. Ju HR, Yang XB, Song XN, Qi YS (2014) Dynamic updating multigranulation fuzzy rough set: approximations and reducts. Int J Mach Learn Cybernet 5(6):981–990

    Google Scholar 

  17. Ju HR, Yang XB, Yu HL, Li TJ, Yu DJ, Yang JY (2016) Cost-sensitive rough set approach. Inform Sci 355–356:282–298

    MATH  Google Scholar 

  18. Lin GP, Liang JY, Qian YH (2015) Uncertainty measures for multigranulation approximation space. Int J Uncert Fuzziness Knowl-Based Syst 23(3):443–457

    MathSciNet  MATH  Google Scholar 

  19. Lin GP, Liang JY, Qian YH (2013) Multigranulation rough sets: from partition to covering. Inform Sci 241:101–118

    MathSciNet  MATH  Google Scholar 

  20. Li JH, Liu ZM (2020) Granule description in knowledge granularity and representation. Knowledge-Based Syst 203:106160

  21. Lin GP, Qian YH, Li JJ (2012) NMGRS: neighborhood-based multigranulation rough sets. Int J Approx Reason 53(7):1080–1093

    MathSciNet  MATH  Google Scholar 

  22. Li FJ, Qian YH, Wang JT, Liang JY (2017) Multigranulation information fusion: a Dempster–Shafer evidence theory-based clustering ensemble method. Inform Sci 378:389–409

    MATH  Google Scholar 

  23. Li JH, Ren Y, Mei CL, Qian YH, Yang XB (2016) A comparative study of multi granulation rough sets and concept lattices via rule acquisition. Knowledge-Based Systems 91:152–164

    Google Scholar 

  24. Liu KY, Yang XB, Fujita H, Liu D, Yang X, Qian YH (2019) An efficient selector for multi-granularity attribute reduction. Inform Sci 505:457–472

    Google Scholar 

  25. Li JZ, Yang XB, Song XN, Li JH, Wang PX, Yu DJ (2019) Neighborhood attribute reduction: a multi-criterion approach. Int J Mach Learn Cybernet 10(4):731–742

    Google Scholar 

  26. Liu Y, Huang WL, Jiang YL, Zeng ZY (2014) Quick attribute reduct algorithm for neighborhood rough set model. Inform Sci 271:65–81

    MathSciNet  MATH  Google Scholar 

  27. Min F, He HP, Qian YH, Zhu W (2011) Test-cost-sensitive attribute reduction. Inform Sci 181(22):4928–4942

    Google Scholar 

  28. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers

    MATH  Google Scholar 

  29. Qian YH, Cheng HH, Wang JT, Liang JY (2017) Grouping granular structures in human granulation intelligence. Inform Sci 382:150–169

    Google Scholar 

  30. Qian YH, Liang JY, Wang F (2009) A new method for measuring the uncertainty in incomplete information systems. Int J Uncertainty Fuzziness Knowl-Based Syst 17(6):855–880

    MathSciNet  MATH  Google Scholar 

  31. Qian YH, Liang JY, Pedrycz W, Dang CY (2010) Positive approximation: an accelerator for attribute reduction in rough set theory. Artif Intell 174(9–10):597–618

    MathSciNet  MATH  Google Scholar 

  32. Qian YH, Liang JY, Yao YY, Dang CY (2010) MGRS: a multi-granulation rough set. Inform Sci 180(6):949–970

    MathSciNet  MATH  Google Scholar 

  33. Qian YH, Liang XY, Lin GP, Guo Q, Liang JY (2017) Local multigranulation decision-theoretic rough sets. Int J Approx Reason 82:119–137

    MathSciNet  MATH  Google Scholar 

  34. Qian YH, Liang XY, Wang Q (2018) Local rough set: a solution to rough data analysis in big data. Int J Approx Reason 97:38–63

    MathSciNet  MATH  Google Scholar 

  35. Sun BZ, Ma WM, Qian YH (2017) Multigranulation fuzzy rough set over two universes and its application to decision making. Knowl-Based Syst 123:61–74

    Google Scholar 

  36. Sang BB, Yang L, Chen HM, Xu WH, Guo YT, Yuan Z (2019) Generalized multi-granulation double-quantitative decision-theoretic rough set of multi-source information system. Int J Approx Reason 115:157–179

    MathSciNet  MATH  Google Scholar 

  37. She YH, He XL, Qian T, Wang QQ, Zeng WL (2019) A theoretical study on object-oriented and property-oriented multi-scale formal concept analysis. Int J Mach Learn Cybernet 10(2):3263–3271

    Google Scholar 

  38. Rao XS, Yang XB, Yang X, Chen XJ, Liu D, Qian YH (2020) Quickly calculating reduct: an attribute relationship based approach. Knowledge-Based Syst 200:106014

  39. Tsang ECC, Song JJ, Chen DG, Yang XB (2019) Order based hierarchies on hesitant fuzzy approximation space. Int J Mach Learn Cybernet 10:1407–1422

    Google Scholar 

  40. Wang CZ, Hu QH, Wang XZ, Chen DG, Qian YH, Dong Z (2018) Feature selection based on neighborhood discrimination index. IEEE Trans Neural Netw Learn Syst 29(7):2986–2999

    MathSciNet  Google Scholar 

  41. Wang XZ, Li JH (2020) New advances in three way decision, granular computing and concept lattice. Int J Mach Learn Cybernet 11(5):945–946

    Google Scholar 

  42. Wang XZ, Li JH (2020) New advances in three-way decision, granular computing and concept lattice. Int J Mach Learn Cybernet 11(5):945–946

    Google Scholar 

  43. Wang XZ, Tsang ECC, Zhao SY, Chen DG, Yeung DS (2007) Learning fuzzy rules from fuzzy samples based on rough set technique. Inform Sci 177(20):4493–4514

    MathSciNet  MATH  Google Scholar 

  44. Wei W, Liang JY (2019) Information fusion in rough set theory?: an overview. Inform Fus 48:107–118

    Google Scholar 

  45. Wei W, Wang JH, Liang JY, Mi X, Dang CY (2015) Compacted decision tables based attribute reduction. Knowl-Based Syst 86:261–277

    Google Scholar 

  46. Wang CZ, Shi YP, Fan XD, Shao MW (2018) Attribute reduction based on k-nearest neighborhood rough sets. Int J Approx Reason 106:18–31

    MathSciNet  MATH  Google Scholar 

  47. Wang X, Wang PX, Yang XB, Yao YY (2021) Attribution reduction based on sequential three-way search of granularity. Int J Mach Learn Cybernet 12(5):1439–1458

    Google Scholar 

  48. Xu WH, Guo YT (2016) Generalized multigranulation double-quantitative decision-theoretic rough set. Knowl-Based Syst 105:190–205

    Google Scholar 

  49. Xu WH, Li WT (2016) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybernet 46(2):166–179

    MathSciNet  Google Scholar 

  50. Xia SY, Liu YS, Ding X, Wang GY, Yu H, Lu YG (2019) Granular ball computing classififiers for efficient, scalable and robust learning. Inform Sci 483:136–152

    MathSciNet  Google Scholar 

  51. Xia SY, Zhang Z, Li WH, Wang GY, Giem E, Chen ZZ (2020) GBNRS: a novel rough set algorithm for fast adaptive attribute reduction in classification. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2020.2997039

    Article  Google Scholar 

  52. Xu SP, Yang XB, Yu HL, Yu DJ, Yang JY, Tsang ECC (2016) Multi-label learning with label-specific feature reduction. Knowl-Based Syst 104:52–61

    Google Scholar 

  53. Yang XB, Liang SC, Yu HL, Gao S, Qian YH (2019) Pseudo-label neighborhood rough set: measures and attribute reductions. Int J Approx Reason 105:112–129

    MathSciNet  MATH  Google Scholar 

  54. Yang X, Li TR, Liu D, Fujita H (2019) A temporal-spatial composite sequential approach of three-way granular computing. Inform Sci 486:171–189

    Google Scholar 

  55. Yang XB, Qian YH, Yang JY (2013) On characterizing hierarchies of granulation structures. Fundamenta Informaticae 123(3):365–380

    MathSciNet  MATH  Google Scholar 

  56. Yao YY (2016) A triarchic theory of granular computing. Granular Comput 1(2):145–157

    Google Scholar 

  57. Yang L, Xu WH, Zhang XY, Sang BB (2020) Multi-granulation method for information fusion in multi-source decision information system. Int J Approx Reason 122(5):47–65

    MathSciNet  MATH  Google Scholar 

  58. Yao YY, Zhang XY (2017) Class-specfic attribute reducts in rough set theory. Inform Sci 418–419:601–618

    MATH  Google Scholar 

  59. Yang XB, Qi Y, Yu HL, Song XN, Yang JY (2014) Updating multigranulation rough approximations with increasing of granular structures. Knowl-Based Syst 64:59–69

    Google Scholar 

  60. Yang XB, Yao YY (2018) Ensemble selector for attribute reduction. Appl Soft Comput 70:1–11

    Google Scholar 

  61. Yang XB, Zhang YQ, Yang JY (2012) Local and global measurements of MGRS rules. Int J Comput Intell Syst 5(6):1010–1024

    MathSciNet  Google Scholar 

  62. Yang XB, Qi YS, Song XN, Yang JY (2013) Test cost sensitive multigranulation rough set: model and minimal cost selection. Inform Sci 250:184–199

    MathSciNet  MATH  Google Scholar 

  63. Zhang PF, Li TR, Wang GQ, Luo C, Chen HM, Zhang JB, Wang DX, Yu Z (2021) Multi-source information fusion based on rough set theory: a review. Inform Fus 68:85–117

    Google Scholar 

  64. Zhang X, Mei CL, Chen DG, Li JH (2016) Feature selection in mixed data: a method using a novel fuzzy rough set-based information entropy. Pattern Recognit 56:1–15

    MATH  Google Scholar 

  65. Zhou P, Hua XG, Li PP, Wu XD (2019) Online streaming feature selection using adapted neighborhood rough set. Inform Sci 481:258–279

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 62076111, 62006099, 62006128, 61906078), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX21_3488), the Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province(No. OBDMA202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xibei Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, J., Liu, K., Ju, H. et al. Triple-G: a new MGRS and attribute reduction. Int. J. Mach. Learn. & Cyber. 13, 337–356 (2022). https://doi.org/10.1007/s13042-021-01404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01404-7

Keywords

Navigation