Skip to main content
Log in

Implement an uncertain vector approach to solve entropy-based four-dimensional transportation problems with discounted costs

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this research paper, using uncertainty theory we introduced and developed entropy-based uncertain four-dimensional transportation problem with fixed charges, discounted costs, and vehicle costs. In this transportation system, we considered a discount policy on the transportation cost which depends on the basis of the transported amount. Here, the discounted costs are in the form of all unit discounts (AlUD), incremental quantity discounts (InQD), and the combination of these two. The main objective is to minimize the total transportation cost via maximum entropy which ensures the number of items to be transported from some source to some destinations by some conveyances through some routes. For optimizing the proposed model, using uncertain programming techniques, we have developed two different models such as expected value programming model and expected constrained programming model. Then, Using minimizing distance method and linear weighted method we formulated and solved the equivalent deterministic transformation of these two constructed models. Finally, to show the application of the proposed models and methods we presented a numerical example with optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aktar MS, De M, Maity S, Mazumder SK, Maiti M (2020) Green 4D transportation problems with breakable incompatible items under type-2 fuzzy-random environment. J Clean Prod 275:122376

    Article  Google Scholar 

  2. Balinski ML (1961) Fixed-cost transportation problem. Naval Res Logist Q 8:41–54

    Article  MATH  Google Scholar 

  3. Bera S, Giri PK, Jana DK, Basu K, Maiti M (2018) Multi-item 4D-TPs under budget constraint using rough interval. Appl Soft Comput 71:364–385

    Article  Google Scholar 

  4. Charnes A, Cooper WW (1959) Chance-constrained programming. Manag Sci 6(1):73–79

    Article  MATH  Google Scholar 

  5. Chen L, Peng J, Zhang B (2017) Uncertain goal programming models for bicriteria solid transportation problem. Appl Soft Comput 51:49–59

    Article  Google Scholar 

  6. Dai W, Chen X (2012) Entropy of function of uncertain variables. Math Comput Model 55(3):754–760

    Article  MATH  Google Scholar 

  7. Dalman H, Guzel N, Sivri M (2016) A fuzzy set-based approach to multi-objective multi-item solid transportation problem under uncertainty. Int J Fuzzy Syst 18(4):716–729

    Article  Google Scholar 

  8. Dalman H (2019) Entropy-based multi-item solid transportation problems with uncertain variables. Soft Comput 23:5931–5943

    Article  MATH  Google Scholar 

  9. Das SK, Roy SK (2019) Effect of variable carbon emission in a multi-objective transportation-p-facility location problem under neutrosophic environment. Comput Ind Eng 132:311–324

    Article  Google Scholar 

  10. Das SK, Pervin M, Roy SK, Weber GW (2021) Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann Oper Res. https://doi.org/10.1007/s10479-020-03809-z

  11. Das SK, Roy SK, Weber GW (2020) Application of Type-2 Fuzzy Logic to a Multi-objective Green Solid Transportation-Location Problem With Dwell Time Under Carbon Tax. Cap, and Offset Policy: Fuzzy Versus Non-fuzzy Techniques. IEEE Trans Fuzzy Sys 28(11):2711–2725

    Article  Google Scholar 

  12. Gao Y, Kar S (2017) Uncertain solid transportation problem with product blending. Int J Fuzzy Syst 19(6):1916–1926

    Article  Google Scholar 

  13. Ghosh S, Roy SK, Ebrahimnejad A, Verdegay JL (2021) Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex Intell Syst 7(2):1009–1023

    Article  Google Scholar 

  14. Giri PK, Maiti MK, Maiti M (2015) Fully fuzzy fixed charge multi-item solid transportation problem. Appl Soft Comput 27:77–91

    Article  Google Scholar 

  15. Gupta S, Ali I, Ahmed A (2018) Multi-choice multi-objective capacitated transportation problem- A case study of uncertain demand and supply. J Stat Manag Syst 21(3):467–491

    Google Scholar 

  16. Halder(Jana) S, Jana B, Das B, Panigrahi G, Maiti M, (2019) Constrained FC 4D MITPs for Damageable Substitutable and Complementary Items in Rough Environments. Mathematics 7(3):281

  17. Halder(Jana) S, Das B, Panigrahi G, Maiti M, (2017) Some Special fixed charge solid transportation problems of substitute and breakable items in crisp and fuzzy environments. Comput Ind Eng 111:272–281

  18. Haley KB (1962) New methods in mathematical programming-The solid transportation problem. Oper Res 10(4):448–463

    Article  MATH  Google Scholar 

  19. Hendiani S, Jiang L, Sharif E, Liao H (2020) Multi-expert multi-criteria decision making based on the likelihoods of interval type-2 trapezoidal fuzzy preference relations. Int J Mach Learn Cybern 11:2719–2741

    Article  Google Scholar 

  20. Hitchcock FL (1941) The Distribution of Product From Several Sources to Numerous Localities. J Math Phys 20(1–4):224–230

    Article  MATH  Google Scholar 

  21. Jana DK, Sahoo P, Koczy TL (2017) Comparative study on credibility measures of type-2 and type-1 fuzzy variables and their application to a multi-objective profit transportation problem via goal programming. Int J Transp Sci Technol 6(2):110–126

    Article  Google Scholar 

  22. Jana DK, Pramanik S, Sahoo P, Mukherjee A (2017) Type-2 fuzzy logic and its application to occupational safety risk performance in industries. Soft Comput 23(1):557–567

    Google Scholar 

  23. Jimenez F, Verdegay JL (1998) Uncertain solid transportation problems. Fuzzy Sets Syst 100(1):45–57

    Article  Google Scholar 

  24. Kocken HG, Sivri M (2016) A simple parametric method to generate all optimal solutions of fuzzy solid transportation problem. Appl Math Model 40(7–8):4612–4624

    Article  MATH  Google Scholar 

  25. Koopmans TC (1949) Optimum utilization of the transportation system. Econom J Econom Soc 17:136–146

    Google Scholar 

  26. Kundu P, Kar S, Maiti M (2014) Fixed charge transportation problem with type-2 fuzzy variables. Inf Sci 255:170–186

    Article  MATH  Google Scholar 

  27. Kundu P, Kar S, Maiti M (2015) Multi-item solid transportation problem with type-2 fuzzy parameters. Appl Soft Comput 31:61–80

    Article  Google Scholar 

  28. Lee SM, Moore LJ (1973) Optimizing Transportation Problems With Multiple Objectives. AIEE Trans 5(4):333–338

    Article  Google Scholar 

  29. Liu B (1999) Uncertain Programming. John Wiley & Sons, New York

    Google Scholar 

  30. Liu B (2002) Theory and practice of uncertain programming. Springer, Berlin

    Book  MATH  Google Scholar 

  31. Liu B (2007) Uncertainty Theory, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  32. Liu B (2009) Some research problems in uncertainty theory. J Uncertain Syst 3(1):3–10

    Google Scholar 

  33. Liu YH, Ha MH (2010) Expected value of function of uncertain variables. J Uncertain Syst 4(3):181–186

    Google Scholar 

  34. Liu B (2010) Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer, Berlin

    Book  Google Scholar 

  35. Liu L, Zhang B, Ma W (2017) Uncertain programming models for fixed charge multi-item solid transportation problem. Soft Comput 22(17):5825–5833

    Article  MATH  Google Scholar 

  36. Liu P, Yang L, Wang L, Li S (2014) A solid transportation problem with type-2 fuzzy variables. Appl Soft Comput 24:543–558

    Article  Google Scholar 

  37. Maity G, Roy SK, Verdegay JL (2016) Multi-objective Transportation Problem with Cost Reliability Under Uncertain Environment. Int J Comput Intell Syst 9(5):839–849

    Article  Google Scholar 

  38. Majumder S, Kundu P, Kar S, Pal T (2019) Uncertain multi-objective multi-item fixed charge solid transportation problem with budget constraint. Soft Comput 23:3279–3301

    Article  MATH  Google Scholar 

  39. Midya S, Roy SK (2021) Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. Int J Mach Learn Cybern 12(3):699–717

    Article  Google Scholar 

  40. Mollanoori H, Tavakkoli-Moghaddam R, Triki C, Hajiaghaei-Keshteli M, Sabouhi F Extending the solid step fixed-charge transportation problem to consider two-stage networks and multi-item shipments. Comput Ind Eng 137:106008

  41. Ojha A, Das B, Mondal S, Maiti M (2009) An entropy based solid transportation problem for general fuzzy costs and time with fuzzy equality. Math Comput Model 50(1–2):166–178

    Article  MATH  Google Scholar 

  42. Ojha A, Das B, Mondal S, Maiti M (2010) A solid transportation problem for an item with fixed charge, vehicle cost and price discounted varying charge using genetic algorithm. Appl Soft Comput 10(1):100–110

    Article  Google Scholar 

  43. Ojha A, Das B, Mondal S, Maiti M (2010) A stochastic discounted multi-objective solid transportation problem for breakable items using Analytical Hierarchy Process. Appl Math Model 34(8):2256–2271

    Article  MATH  Google Scholar 

  44. Ojha A, Das B, Mondal SK, Maiti M (2013) A multi-item transportation problem with fuzzy tolerance. Appl Soft Comput 13(8):3703–3712

    Article  Google Scholar 

  45. Pandian P, Anuradha D (2010) A new approach for solving solid transportation problems. Appl Math Sci 4(72):3603–3610

    MATH  Google Scholar 

  46. Roy SK, Midya S, Weber G (2019) Multi-objective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural Comput Appl 31:8593–8613

    Article  Google Scholar 

  47. Roy SK, Midya S (2019) Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. Appl Intell 49:3524–3538

    Article  Google Scholar 

  48. Sahoo P, Jana DK, Panigrahi G (2019) Interval Type-2 Fuzzy Logic and Its Application to Profit Maximization Solid Transportation Problem in Mustard Oil Industry. Recent Adv Intell Inf Syst Appl Math 863:18–29

    Article  Google Scholar 

  49. Sahoo P, Jana DK, Pramanik S, Panigrahi G (2020) Uncertain four-dimensional multi-objective multi-item transportation models via GP technique. Soft Comput 24:17291–17307

    Article  MATH  Google Scholar 

  50. Sahoo P, Jana DK, Pramanik S, Panigrahi G (2021) A novel reduction method for type-2 uncertain normal critical values and its applications on 4D profit transportation problem involving damageable and substitute items. Int J Appl Comput Math 7:123

    Article  MATH  Google Scholar 

  51. Samanta S, Jana DK, Panigrahi G, Maiti M (2020) Novel multi-objective, multi-item and four-dimensional transportation problem with vehicle speed in LR-type intuitionistic fuzzy environment. Neural Comput Appl 32(15):11937–11955

    Article  Google Scholar 

  52. Schell ED (1955) Distribution of a product by several properties, In: Proceedings of 2nd Symposium in Linear Programming, DCS/comptroller, HQ US Air Force, Washington, DC, 615-642

  53. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois press, Urbana

    MATH  Google Scholar 

  54. Shang X, Jia B, Yang K, Yuan Y, Ji H (2021) A credibility-based fuzzy programming model for the hierarchical multimodal hub location problem with time uncertainty in cargo delivery systems. Int J Mach Learn Cybern 12(5):1413–1426

    Article  Google Scholar 

  55. Shen J, Zhu K (2020) An uncertain two-echelon fixed charge transportation problem. Soft Comput 24:3529–3541

    Article  MATH  Google Scholar 

  56. Xie F, Jia R (2012) Nonlinear fixed charge transportation problem by minimum cost flow-based genetic algorithm. Comput Ind Eng 63(4):763–778

    Article  Google Scholar 

  57. Yang L, Liu L (2007) Fuzzy fixed charge solid transportation problem and algorithm. Appl Soft Comput 7:879–889

    Article  Google Scholar 

  58. Zadeh LA (1968) Probability measures of fuzzy events. J Mathe Anal Appl 23(2):421–427

    Article  MATH  Google Scholar 

  59. Zhang B, Li S, Chen L (2016) Fixed Charge Solid Transportation Problem in Uncertain Environment and its Algorithm. Comput Ind Eng 102:186–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Kumar Jana.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest for the publication of this paper.

Compliance with Ethical Standards

We declared that Research work done by self finance. No institutional fund has been provided.

Ethical approval

The authors declared that this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Preliminaries

In this section, we will discuss uncertain variables, uncertain vector, and uncertain entropy function.

1.1 Uncertain variables and uncertain vectors

In this section, we briefly discuss some fundamental definitions, theorems, and examples of uncertain variables and uncertain vectors.

Definition A.1

[31] We assume that \((\Gamma ,{\mathcal {L}})\) be a measurable space, where \({\mathcal {L}}\) be a \(\sigma \) -algebra on a nonempty set \(\Gamma \). A set function \({\mathcal {M}}:{\mathcal {L}}\rightarrow [0, 1]\) is called an uncertain measure if it satisfies the following four axioms:

1. Normality axiom : \({\mathcal {M}}\{ \Gamma \}\)=1 for the universal set \(\Gamma \).

2. Duality axiom: \({\mathcal {M}}\{\Lambda \}\)+\( {\mathcal {M}}\{\Lambda ^{C}\}\)=1, for any event \(\Lambda \in {\mathcal {L}}\) and \(\Lambda ^{C}\) is a complement of \(\Lambda \).

3. Subadditivity axiom : For every countable sequence of events \(\Lambda _{1},\Lambda _{2},...\), we have

$$\begin{aligned} {\mathcal {M}}{\bigg \{}\bigcup _{n=1}^{\infty }\Lambda _{n} \bigg \}\le \sum _{n=1}^{\infty }{\mathcal {M}}\bigg \{\Lambda _{n} \bigg \} \end{aligned}$$

4. Product axiom : Let \((\Gamma _n,{\mathcal {L}}_n,{\mathcal {M}}_n)\) be uncertainty spaces for \(n=1,2,\cdots \).Then, the product uncertain measure \({\mathcal {M}}\) is an uncertain measure satisfying the following condition:

$$\begin{aligned} {\mathcal {M}}{\bigg \{}\prod _{n=1}^{\infty }\Lambda _{n} \bigg \} = \bigwedge _{n=1}^{\infty }{\mathcal {M}}_n\bigg \{\Lambda _{n} \bigg \} \end{aligned}$$

where \(\Lambda _{n}\) are arbitrarily chosen events from \({\mathcal {L}}_{n}\) for \(n=1,2,\cdots \). respectively.

In this case, the triplet \((\Gamma ,{\mathcal {L}},{\mathcal {M}})\) is called an uncertainty space (US) where \(\Gamma \) be a non-empty set, \({\mathcal {L}}\) be a \(\sigma \) -algebra on the nonempty set \(\Gamma \) and \({\mathcal {M}}\) be the uncertain measure (UM).

Definition A.2

[31] An uncertain variable (UV) is denoted by \(\zeta \) and which is a function from an US \((\Gamma ,{\mathcal {L}}, {\mathcal {M}})\) to the set of real numbers such that

$$\begin{aligned} \{\zeta \ \in B\}=\{\gamma \in \Gamma |{\zeta }(\gamma )\in B\} \end{aligned}$$

is an event for any Borel set B of real numbers.

For any Borel sets \(B_1,B_2,\cdots B_n\) of real numbers, the UVs \({\zeta _1},{\zeta _2} ,\cdots ,{\zeta _n} \) are said to be independent if

$$\begin{aligned} {\mathcal {M}}{\bigg \{}\bigcap ^n_{i=1} (\zeta _i\ \in B_i)\bigg \}= \bigwedge _{i=1}^{n}{\mathcal {M}}\{\zeta _i\ \in B_i \} \end{aligned}$$

Definition A.3

[31] The uncertainty distribution (UD) \(\Phi (x)\) of an UV \(\zeta \) is defined by

$$\begin{aligned} \Phi (x)= {\mathcal {M}} \{{\zeta } \le x \} \qquad \forall ~~ x\in \mathfrak {R}. \end{aligned}$$

Definition A.4

[32] An UD \(\Phi (x)\) is said to be regular UD if it is a strictly increasing and continuous function with respect to x at which \(0< \Phi (x) < 1\), and

$$\begin{aligned} \lim _{x\rightarrow -\infty } \Phi (x)= 0 \qquad \qquad \text {and} \qquad \qquad \lim _{x\rightarrow \infty } \Phi (x)= 1 \end{aligned}$$

Definition A.5

[32] Let \({\zeta }\) be an UV with a regular UD \(\Phi (x)\). Then the inverse function \(\Phi ^{-1}(\beta )\) is called the inverse UD of \({\zeta }\), where \(\beta \in [0,1]\).

Example A.1

[31] An UV \({\zeta }\) is said to be zigzag UV if \({\zeta }\) follows a zigzag UD as given below :

$$\begin{aligned} \Phi (x)= \left\{ \begin{array}{lll} 0 &{} \text{ if } &{} x\le a \\ \frac{x-a}{2(b-a)} &{} \text{ if } &{}a< x\le b \\ \frac{x+c-2b}{2(c-b)} &{} \text{ if } &{}b< x\le c \\ 1 \text{ if } x> c \\ \end{array} \right. \end{aligned}$$

where \({\zeta }\) is denoted by \( {\zeta } \sim {\mathcal {Z}}(a,b,c)\) such that \(a<b<c\) and abc are any real numbers.

The UD of a zigzag UV \({\mathcal {Z}}(a,b,c)\) is displayed in figure 5.

Fig. 5
figure 5

Zigzag UD

Example A.2

[31] The inverse UD of zigzag UV \({\mathcal {Z}}(a,b,c)\) is defined as

$$\begin{aligned} \Phi ^{-1}(\beta )= \left\{ \begin{array}{lll} (1-2\beta ) a +2\beta b &{} \text{ if } &{} \beta < 0.5 \\ (2-2\beta ) b +(2\beta -1) c &{} \text{ if } &{} \beta \ge 0.5 \\ \end{array} \right. \end{aligned}$$

Example A.3

[33] Let \({\zeta } \sim {\mathcal {Z}}(a,b,c)\) be a zigzag UV. Then its inverse UD \(\Phi ^{-1}(\beta )=\frac{1}{2}[(1-\beta )a+ b+ \beta c]\) and the expected value of \({\zeta } \) can be expressed as

$$\begin{aligned} E[{\zeta }]= \int _{0}^{1} \frac{1}{2}[(1-\beta )a+ b+ \beta c] d\beta \end{aligned}$$

Theorem A.1

[34] Let \({\zeta _{1}},{\zeta _{2}},{\zeta _{3}} ,\cdots ,{\zeta _{n}}\) be independent UVs with regular UDs \(\Phi _1,\Phi _2,\Phi _3,\cdots ,\Phi _n\) respectively. If \(f(\zeta _{1},{\zeta _{2}},{\zeta _{3}} ,\cdots ,{\zeta _{n}})\) is strictly increasing w. r. to \({\zeta _1},{\zeta _2},{\zeta _3} ,\cdots ,{\zeta _m}\) and strictly decreasing w. r. to \({\zeta _{m+1}},{\zeta _{m+2}}, {\zeta _{m+3}},\cdots ,{\zeta _{n}}\), then

$$\begin{aligned} {\zeta }=f({\zeta _1},{\zeta _2},{\zeta _3} ,\cdots ,{\zeta _n}) \end{aligned}$$

has an inverse UD

$$\begin{aligned} \Psi ^{-1}(\beta )= & {} f\bigg ( \Phi _1^{-1}(\beta ),\Phi _2^{-1}(\beta ),\cdots ,\\&\Phi _m^{-1}(\beta ),\Phi _{m+1}^{-1}(1-\beta ),\cdots ,\Phi _n^{-1}(1-\beta )\bigg ). \end{aligned}$$

and has an expected value

$$\begin{aligned} E[\zeta ]= & {} \int _{0}^{1} f\bigg ( \Phi _1^{-1}(\beta ),\Phi _2^{-1}(\beta ),\cdots ,\\&\Phi _m^{-1}(\beta ),\Phi _{m+1}^{-1}(1-\beta ),\cdots ,\Phi _n^{-1}(1-\beta )\bigg ) d\beta . \end{aligned}$$

Definition A.6

[31] The expected value of of an UV \({\zeta }\) is denoted by \( E[{\zeta }]\) and defined as

$$\begin{aligned} E[{\zeta }]= \int _{0}^{+\infty }{\mathcal {M}} \{{\zeta } \ge r\} dr- \int _{-\infty }^{0}{\mathcal {M}} \{{\zeta } \le r\} dr \end{aligned}$$

if at least one of the two integrals is finite.

Theorem A.2

[34] Let \({\zeta }\) be an UV with regular UD \(\Phi (x)\). If the expected value exists, then

$$\begin{aligned} E[{\zeta }]=\int _{0}^{1}\Phi ^{-1}(\beta ) d\beta \end{aligned}$$

where \(\Phi ^{-1}(\beta )\) is the inverse UD of UV \({\zeta }\) such that \(\beta \in [0,1]\) is the predetermined confidence level.

Theorem A.3

[31] Let us assume that \({\zeta _{1}}\) and \({\zeta _{2}}\) be two independent UVs with finite expected values. Then for any real numbers \(a_{1}\) and \(a_{2}\), we have

$$\begin{aligned} E[a_{1}\,{\zeta _{1}}+a_{2}\,{\zeta _{2}}]= a_{1}\,E[{\zeta _{1}}] +a_{2}\,E[{\zeta _{2}}]. \end{aligned}$$

Theorem A.4

[31] A function \(\Phi ^{-1}(\beta )\) is an inverse UD of an UV \({\zeta }\) if and only if

$$\begin{aligned} {\mathcal {M}}\bigg \{{\zeta }\le \Phi ^{-1}(\beta ) \bigg \}\ = \beta \qquad \forall ~~ \beta \in [0,1]. \end{aligned}$$

Theorem A.5

[32] Let us assume that \(y(x,\zeta _{1},{\zeta _{2}},{\zeta _{3}} ,\cdots ,{\zeta _{n}})\) is a constraint function also this is strictly increasing w. r. to \({\zeta _1},{\zeta _2},{\zeta _3} ,\cdots ,{\zeta _m}\) and strictly decreasing w. r. to \({\zeta _{m+1}},{\zeta _{m+2}}, {\zeta _{m+3}},\cdots ,{\zeta _{n}}\) are also independent UVs with UDs \(\Phi _1,\Phi _2,\Phi _3,\cdots ,\Phi _n\) respectively, then the chance constraint

$$\begin{aligned} {\mathcal {M}}\bigg \{y(x,\zeta _{1},{\zeta _{2}},{\zeta _{3}} ,\cdots ,{\zeta _{n}})\le 0 \bigg \}\ \ge \beta \qquad \forall ~~ \beta \in [0,1] \end{aligned}$$

fulfills if and only if

$$\begin{aligned}&y\bigg ( x, \Phi _1^{-1}(\beta ),\Phi _2^{-1}(\beta ),\cdots ,\Phi _m^{-1}(\beta ),\\&\quad \Phi _{m+1}^{-1}(1-\beta ),\cdots ,\Phi _n^{-1}(1-\beta )\bigg )\le 0. \end{aligned}$$

Definition A.7

[31] A n-dimensional uncertain vector (UnV) is a function \(\nu \) from an US \((\Gamma ,{\mathcal {L}},{\mathcal {M}})\) to the set of n-dimensional real vectors V such that \(\{\nu \ \in B\}\) is an event for any n-dimensional Borel set B.It can be write in symbolically,

$$\begin{aligned} \nu :(\Gamma ,{\mathcal {L}},{\mathcal {M}}) \rightarrow V \end{aligned}$$

Hence, we can write, \((\nu _1, \nu _2, \cdots ,\nu _n)\) is an UnV if and only if \(\nu _1, \nu _2, \cdots ,\nu _n\) are UVs.

The joint UD of an UnV \((\nu _1, \nu _2, \cdots ,\nu _n)\) is defined as

$$\begin{aligned}&\Phi (r_1, r_2, r_3, \cdots , r_n ) \\&\quad = {\mathcal {M}}\big \{ \nu _1 \le r_1, \nu _2 \le r_2, \nu _3 \le r_3, \cdots ,\nu _n\le r_n \big \}\ \end{aligned}$$

for any real values \(r_1, r_2, r_3, \cdots , r_n \).

Theorem A.6

[31] Let \(\nu _1, \nu _2, \nu _3, \cdots ,\nu _n\) be independent UVs with UDs \(\Phi _{1},\Phi _{2},\Phi _{3},\cdots , \Phi _{n}\), respectively. Then, the UnV \((\nu _1, \nu _2, \nu _3, \cdots ,\nu _n)\) has a joint UD

$$\begin{aligned}&\Phi (r_1, r_2, r_3, \cdots , r_n ) \\&\quad = \Phi _{1}(r_1)\wedge \Phi _{2}(r_2)\wedge \Phi _{3}(r_3)\wedge \cdots \wedge \Phi _{n}(r_n). \end{aligned}$$

for any real values \(r_1, r_2, r_3, \cdots , r_n \).

Proof

Since \(\nu _1, \nu _2, \nu _3, \cdots ,\nu _n\) be independent UVs, we have

$$\begin{aligned} \Phi (r_1, r_2, r_3, \cdots , r_n )= & {} {\mathcal {M}}{\bigg \{}\bigcap ^n_{k=1} (\nu _k\ \le r_{k} )\bigg \}\\= & {} \bigwedge _{k=1}^{n}{\mathcal {M}}\{\nu _k \le r_{k} \} = \bigwedge _{k=1}^{n} \Phi _{k} (r_{k}). \end{aligned}$$

for any real values \(r_1, r_2, r_3, \cdots , r_n \). Hence the theorem is proved.

Definition A.8

[32] For any n-dimensional Borel sets \(B_1,B_2,\cdots B_n\) of real vectors, the n-dimensional UnVs \({\nu _1},{\nu _2} ,\cdots ,{\nu _n} \) are said to be independent if any one of the following conditions is fulfilled:

$$\begin{aligned}&(i) \,\, {\mathcal {M}}{\bigg \{}\bigcap ^n_{k=1} (\nu _k\ \in B_k)\bigg \}= \bigwedge _{k=1}^{n}{\mathcal {M}}\{\nu _k\ \in B_k \} \\&\quad (ii) \,\, {\mathcal {M}}{\bigg \{}\bigcup _{k=1}^{n} (\nu _k\ \in B_k)\bigg \}= \bigvee _{k=1}^{n}{\mathcal {M}}\{\nu _k\ \in B_k \} \end{aligned}$$

1.2 Concepts about entropy of uncertain variables

In this section, we will discuss the entropy of an UV with the UD. In 2009, Liu [32], a well-known mathematician, first given the idea of uncertain entropy theory.

Definition A.9

[32] Let us assume that \({\zeta }\) be an UV with UD \(\Phi (x)\). Then its entropy is denoted by \(H[\zeta ]\) and defined as:

$$\begin{aligned} H[\zeta ]=\int _{-\infty }^{\infty } S(\Phi (x)) \, \text {dx} = \int _{-\infty }^{\infty } S ({\mathcal {M}} \{{\zeta } \le x \}) \, \text {dx} \end{aligned}$$

where \(S(t)= -t\,\text {ln}\, t -(1-t)\,\,\text {ln} (1-t)\).

Fig. 6
figure 6

Graphical representation of entropy function

The geometric representation of entropy function \(H[\zeta ]\) is displayed in figure 6. This figure follows that, the function S(t) is strictly concave shape on the interval [0, 1] and symmetric shape about \(t=0.5\).

Theorem A.7

[34] If \(\zeta \in [a, b] \) then \(0\le H[\zeta ] \le \text {ln}\, 2 \) and \(H[\zeta ] = (b-a) \, \text {ln}\, 2\), with the corresponding UD is given below:

$$\begin{aligned} \Phi (x)= \left\{ \begin{array}{lll} 0 &{} \text{ if } &{}x< a \\ 0.5 &{} \text{ if } &{} a \le x\le b \\ 1 &{} \text{ if } &{} x \ge b. \\ \end{array} \right. \end{aligned}$$

where \({\zeta }\) is the UV and \(H[\zeta ]\) is the entropy of \({\zeta }\) such that \(a<b<c\) and abc are any real numbers.

Theorem A.8

[34] Let \({\zeta }\) be an UV with regular UD \(\Phi (x)\). If the entropy \( H[\zeta ]\) exists, then

$$\begin{aligned} H[\zeta ]=\int _{0}^{1} \Phi ^{-1}(\beta ) \,\, \text {ln}\, \, \frac{\beta }{1-\beta } \,\, \text {d} \beta . \end{aligned}$$

Example A.6

[34] The inverse UD of zigzag UV \( {\zeta } \sim {\mathcal {Z}}(a,b,c)\) is given by

$$\begin{aligned} \Phi ^{-1}(\beta )= \left\{ \begin{array}{lll} (1-2\beta ) a +2\beta b &{} \text{ if } &{} \beta < 0.5 \\ (2-2\beta ) b +(2\beta -1) c &{} \text{ if } &{} \beta \ge 0.5 \\ \end{array} \right. \end{aligned}$$

Then using theorem A.7 we get the entropy of \({\zeta }\):

$$\begin{aligned} H[\zeta ]=\int _{0}^{1} \Phi ^{-1}(\beta ) \,\, \text {ln}\, \, \frac{\beta }{1-\beta } \,\, \text {d} \beta = \frac{c-a}{2}. \end{aligned}$$

Theorem A.9

[6] Let us assume that \({\zeta _{1}},{\zeta _{2}},{\zeta _{3}} ,\cdots ,{\zeta _{n}}\) be independent UVs with regular UDs \(\Phi _1,\Phi _2,\cdots ,\Phi _n\) respectively and if \(f:\mathfrak {R}^{n} \rightarrow \mathfrak {R}\) is a strictly monotone function then the UV \({\zeta }=g\,({\zeta _1},{\zeta _2},{\zeta _3} ,\cdots ,{\zeta _n})\) has an entropy

$$\begin{aligned} H[\zeta ]= & {} \int _{0}^{1} g\,( \Phi _1^{-1}(\beta ),\Phi _2^{-1}(\beta ),\cdots ,\\&\Phi _n^{-1}(\beta )) \,\, \text {ln}\, \, \frac{\beta }{1-\beta } \,\, \text {d} \beta . \end{aligned}$$

Theorem A.10

[6] Let us assume that \({\zeta _{1}},{\zeta _{2}},{\zeta _{3}} ,\cdots ,{\zeta _{n}}\) be independent UVs with regular UDs \(\Phi _1,\Phi _2,\cdots ,\Phi _n\) respectively and if \(f:\mathfrak {R}^{n} \rightarrow \mathfrak {R}\) is a strictly increasing function w. r. to \(x_{1},x_{2}, \cdots , x_{m} \) and strictly decreasing function w. r. to \({x_{m+1}},{x_{m+2}}, {x_{m+3}},\cdots ,{x_{n}}\), then the UV \({\zeta }=g\,({\zeta _1},{\zeta _2},{\zeta _3} ,\cdots ,{\zeta _n})\) has an entropy

$$\begin{aligned} H[\zeta ]= & {} \int _{0}^{1} g\,( \Phi _1^{-1}(\beta ),\Phi _2^{-1}(\beta ),\cdots , \Phi _m^{-1}(\beta ), \Phi _{m+1}^{-1}(1-\beta ),\cdots , \\&\Phi _{n}^{-1}(1-\beta ) ) \,\, \text {ln}\, \, \frac{\beta }{1-\beta } \,\, \text {d} \beta . \end{aligned}$$

Theorem A.11

[6] If \({\zeta _{1}}\) and \({\zeta _{2}}\) be two independent UVs with any \(a_{1}, a_{2} \in \mathfrak {R}\), then we get

$$\begin{aligned} H[a_{1}\,{\zeta _{1}}+a_{2}\,{\zeta _{2}}]= |a_{1}|\,H[{\zeta _{1}}] +|a_{2}|\,H[{\zeta _{2}}]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P., Jana, D.K., Pramanik, S. et al. Implement an uncertain vector approach to solve entropy-based four-dimensional transportation problems with discounted costs. Int. J. Mach. Learn. & Cyber. 14, 3–31 (2023). https://doi.org/10.1007/s13042-021-01457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01457-8

Keywords

Navigation