Skip to main content
Log in

MGRL: attributed multiplex heterogeneous network representation learning based on multi-granularity information fusion

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Nowadays, attributed multiplex heterogeneous network (AMHN) representation learning has shown superiority in many network analysis tasks due to its ability to preserve both the structure of the network and the semantics of the nodes. However, few people consider the correlation between content attributes within each node. No personalized analysis model is designed for different semantics of heterogeneous relations. To address these issues, this paper proposes an MGRL model. MGRL adopts a filter based on variance discrimination to filter out the noise information in the node content attributes. To better utilize semantic characteristics of heterogeneous relations, personalized fusion models are designed according to heterogeneous relation categories: peer relations and subordinate relations. Results of experiments conducted on three real-world datasets show an obvious advantage of the proposed MGRL model over state-of-the-art baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://dblp.uni-trier.de.

  2. Macro-F1 and Micro-F1 are adopted as evaluation metrics on node classification.

  3. LeakyReLU denotes leaky version of a rectified linear unit.

  4. https://aminer.org/data.

  5. http://www.yelp.com.

References

  1. Wang R, Shi C, Zhao T, Wang X, Ye YF (2021) Heterogeneous information network embedding with adversarial disentangler. IEEE Trans Knowl Data Eng

  2. Lee S, Park C, Yu H (2019) Bhin2vec: balancing the type of relation in heterogeneous information network. In: Proceedings of the 28th ACM international conference on information and knowledge management, pp 619–628

  3. Chen F, Wang YC, Wang B, Kuo CCJ (2020) Graph representation learning: a survey. APSIPA Trans Signal Inf Process 9

  4. Ji Y, Jia T, Fang Y, Shi C (2021) Dynamic heterogeneous graph embedding via heterogeneous hawkes process. ECML/PKDD 1:388–403

  5. Qiu J, Dhulipala L, Tang J, Peng R, Wang C (2021) Lightne: a lightweight graph processing system for network embedding. In: Proceedings of the 2021 international conference on management of data, pp 2281–2289

  6. Shi C, Li Y, Zhang J, Sun Y, Philip SY (2016) A survey of heterogeneous information network analysis. IEEE Trans Knowl Data Eng 29(1):17–37

    Article  Google Scholar 

  7. Sun Y, Han J (2012) Mining heterogeneous information networks: a structural analysis approach. ACM Sigkdd Explorations Newslett 14(2):20–28

    Article  Google Scholar 

  8. Cen Y, Zou X, Zhang J, Yang H, Zhou J, Tang J (2019) Representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1358–1368

  9. Zhang C, Song D, Huang C, Swami A, Chawla NV (2019) Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 793–803

  10. Lu Y, Shi C, Hu L, Liu Z (2019) Relation structure-aware heterogeneous information network embedding. Proc AAAI Conf Artif Intell 33:4456–4463

    Google Scholar 

  11. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  12. Lin M, Chen Q, Yan S (2013) Network in network. Comput Sci

  13. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 701–710

  14. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. Comput Sci

  15. Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42(8):30–37

    Article  Google Scholar 

  16. Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. KDD 855–864

  17. Tang J, Meng Q, Wang M, Zhang M, Yan J, Mei Q (2015) LINE: Large-scale Information Network Embedding. WWW 1067–1077

  18. Ribeiro LF, Saverese PH, Figueiredo DR (2017) struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 385–394

  19. Wang D, Cui P, Zhu W (2016) Structural deep network embedding. KDD, pp 1225–1234

  20. Shi C, Hu B, Zhao WX, Philip SY (2018) Heterogeneous information network embedding for recommendation. IEEE Trans Knowl Data Eng 31(2):357–370

    Article  Google Scholar 

  21. Dong Y, Chawla NV, Swami A (2017) metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 135–144

  22. Wang C, Song Y, Li H, Zhang M, Han J (2018) Unsupervised meta-path selection for text similarity measure based on heterogeneous information networks. Data Mining Knowl Discov 32(6):1735–1767

    Article  MathSciNet  Google Scholar 

  23. Wang Z, Liu H, Yingpeng Du, Wu Z (2019) Unified Embedding Model over Heterogeneous Information Network for Personalized Recommendation. IJCAI, Xing Zhang, pp 3813–3819

  24. Han X, Shi C, Wang S, Philip SY, Song L (2018) Aspect-level deep collaborative filtering via heterogeneous information networks. In: IJCAI, pp 3393–3399

  25. Tang J, Qu M, Mei Q (2015) PTE: Predictive text embedding through large-scale heterogeneous Text Networks. https://arxiv.org/abs/1508.00200

  26. Xu L, Wei X, Cao J, Yu PS (2017) Embedding of embedding (EOE) joint embedding for coupled heterogeneous networks. In: Proceedings of the tenth ACM international conference on web search and data mining, pp 741–749

  27. Shang J, Qu M, Liu J, Kaplan LM, Han J, Peng J (2016) Meta-path guided embedding for similarity search in large-scale heterogeneous information networks. https://arXiv.org/1610.09769

  28. Fu Ty, Lee WC, Lei Z (2017) Hin2vec: Explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on conference on information and knowledge management, pp 1797–1806

  29. Wang X, Zhang Y, Shi C (2019) Hyperbolic heterogeneous information network embedding. Proc AAAI Conf Artif Intell 33:5337–5344

    Google Scholar 

  30. Chen H, Yin H, Wang W, Wang H, Nguyen QVH, Li X (2018) PME: projected metric embedding on heterogeneous networks for link prediction. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1177–1186

  31. Hu B, Fang Y, Shi C (2019) Adversarial learning on heterogeneous information networks. KDD 120–129

  32. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27:2672–2680

    Google Scholar 

  33. Zhang J, Xia C, Zhang C, Cui L, Fu Y, Philip SY (2017) Bl-mne: emerging heterogeneous social network embedding through broad learning with aligned autoencoder. In: 2017 IEEE international conference on data mining (ICDM). IEEE, pp 605–614

  34. Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph attention network. In: The World Wide Web conference, pp 2022–2032

  35. Wang H, Zhang F, Hou M, Xie X, Guo M, Liu Q (2018) Shine: signed heterogeneous information network embedding for sentiment link prediction. In: Proceedings of the eleventh ACM international conference on web search and data mining, pp 592–600

  36. Zhou S, Bu J, Wang X, Chen J, Hu B, Chen D, Wang C (2019) Hahe: hierarchical attentive heterogeneous information network embedding

  37. Xiong Y, Zhang Y, Kong X, Zhu Y (2018) Netcycle+: a framework for collective evolution inference in dynamic heterogeneous networks. IEEE Trans Knowl Data Eng 30(8):1547–1560

    Article  Google Scholar 

  38. Wang X, Liu N, Han H, Shi C (2021) Self-supervised heterogeneous graph neural network with co-contrastive learning. KDD 1726–1736

  39. Zou X, Zheng Q, Dong Y, Guan X, Kharlamov E, Lu J, Tang J (2021) TDGIA: Effective injection attacks on graph neural networks. KDD 2461–2471

  40. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks

  41. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks

  42. Lee JB, Rossi RA, Kim S, Ahmed NK, Koh E (2019) Attention models in graphs: a survey. ACM Trans Knowl Discov Data 13(6):1–25

    Article  Google Scholar 

  43. Fu S, Wang G, Xia S, Liu L (2020) Deep multi-granularity graph embedding for user identity linkage across social networks. Knowledge-Based System 193:105301

    Article  Google Scholar 

  44. Li J, Huang C, Qi J, Qian Y, Liu W (2017) Three-way cognitive concept learning via multi-granularity. Inf Sci 378:244–263

    Article  Google Scholar 

  45. Wang G (2017) DGCC: data-driven granular cognitive computing. Granular Comput 2(4):343–355

    Article  Google Scholar 

  46. Lau JH, Baldwin T (2016) An empirical evaluation of doc2vec with practical insights into document embedding generation

  47. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks[C]//European conference on computer vision. Springer, Cham 818–833

  48. Asadi S, Roshan SE (2021) A bi-objective optimization method to produce a near-optimal number of classifiers and increase diversity in bagging. Knowledge-Based System 213:106656

    Article  Google Scholar 

  49. Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. ICLR (Poster)

  50. Roshan S, Asadi S (2021) Development of ensemble learning classification with density peak decomposition-based evolutionary multi-objective optimization. Int J Mach Learn Cybernet 12(6):1737–1751

    Article  Google Scholar 

  51. Fan S, Zhu J, Han X, Shi C, Hu L, Ma B, Li Y (2019) Metapath-guided heterogeneous graph neural network for intent recommendation. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2478–2486

  52. Asadi S, Shahrabi J (2017) Complexity-based parallel rule induction for multiclass classification. Inf Sci 380:53–73

    Article  Google Scholar 

  53. Xia S, Peng D, Meng D, Zhang C, Wang G, Giem E, Wei W, Chen Z (2020) A fast adaptive k-means with no bounds. IEEE Trans Pattern Anal Mach Intell

  54. Strehl A, Ghosh J, Mooney R (2000) Impact of similarity measures on web-page clustering. Workshop Artif Intell Web Search (AAAI 2000) 58:64

    Google Scholar 

  55. Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE[J]. J Mach Learn Res 9(11)

Download references

Acknowledgements

The authors thank the National Key Research and Development Program of China under Grant 2017YFC0804002, the National Natural Science Foundation of P. R. China under Grant Nos. 61936001, 61772096 and 61806031, the Natural Science Foundation of Chongqing Nos. cstc2019jcyj-cxttX0002 and cstc2019jcyj-msxmX0485, Graduate Research and Innovation Project Plan of Chongqing Municipal Education Commission (Grant no. CYB18174), the Doctor Training Program of Chongqing University of Posts and Telecommunications (Grant no. BYJS201809) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Wang, G., Fu, S. et al. MGRL: attributed multiplex heterogeneous network representation learning based on multi-granularity information fusion. Int. J. Mach. Learn. & Cyber. 13, 1891–1906 (2022). https://doi.org/10.1007/s13042-021-01494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01494-3

Keywords

Navigation