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Abstract
Deep Learning methods have important applications in the building construction image classification field. One challenge 
of this application is Convolutional Neural Networks adoption in a small datasets. This paper proposes a rigorous method-
ology for tuning of Data Augmentation hyperparameters in Deep Learning to building construction image classification, 
especially to vegetation recognition in facades and roofs structure analysis. In order to do that, Logistic Regression models 
were used to analyze the performance of Convolutional Neural Networks trained from 128 combinations of transformations 
in the images. Experiments were carried out with three architectures of Deep Learning from the literature using the Keras 
library. The results show that the recommended configuration (Height Shift Range = 0.2; Width Shift Range = 0.2; Zoom 
Range =0.2) reached an accuracy of 95.6% in the test step of first case study. In addition, the hyperparameters recommended 
by proposed method also achieved the best test results for second case study: 93.3%.

Keywords  Deep learning · Convolutional neural networks · Hyperparameter tuning · Data augmentation · Building 
construction image classification

1  Introduction

Deep Learning methods have important applications in 
the Digital Image Processing field [4, 23, 42, 47]. In this 
sense, a possible application of Deep Learning is building 
construction area [8, 10, 14, 41, 53]. In recent literature, 
there are several applications in this research field, such as: 

crack detection [8, 54], road crack classification [53], safety 
guardrail detection [22], structural damage recognition [11], 
detecting safety helmet [41], safety harness detection [10], 
classification of rock fragments [50], damage detection of a 
steel bridge [1], tunnel lining defects [49] and facade defects 
classification [14].

Deep Learning methods can also be applied in recogni-
tion of vegetation in building facades images [32]. In fact, 
the growth of biological manifestations on building facades 
may indicate the deterioration and degradation of construc-
tions [2, 24]. In addition, the detection of this pathology in 
inspection images can assist in the conservation of historic 
buildings [7, 21, 24, 37]. In this sense, [32] proposes a Deep 
Learning approach for recognizing vegetation in buildings. 
Another possibility is to use Deep Learning analysis of roof 
structures [33]. In the literature, there are several examples 
of works that investigated the efficient of roofs structure [5, 
12, 33, 43]. For example, in a recent study, [33] proposes 
a methodology to tuning of two hyperparameters (learn-
ing rate and optimizer) of Neural Networks in the building 
roof image classification. It is also worth noting that, one of 
the relevant factors on [32] and [33] was the experiments 
with Data Augmentation. [32] verified the improvement 

 *	 André Luiz C. Ottoni 
	 andre.ottoni@ufrb.edu.br

	 Raphael M. de Amorim 
	 amorimba@gmail.com

	 Marcela S. Novo 
	 marcela.novo@ufba.br

	 Dayana B. Costa 
	 dayanabcosta@ufba.br

1	 Technologic and Exact Center, Federal University 
of Recôncavo da Bahia, Cruz das Almas, Brazil

2	 Electrical Engineering Graduate Program, Federal University 
of Bahia, Salvador, Brazil

3	 Department of Electrical and Computer Engineering, Federal 
University of Bahia, Salvador, Brazil

4	 Department of Structural and Construction Engineering, 
Federal University of Bahia, Salvador, Brazil

http://orcid.org/0000-0003-2136-9870
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-022-01555-1&domain=pdf


172	 International Journal of Machine Learning and Cybernetics (2023) 14:171–186

1 3

in validation accuracy when using Data Augmentation to 
increase the training database.

In fact, Data Augmentation techniques play an impor-
tant role in the application of Machine Learning in small 
datasets [4, 9, 42, 51, 52]. This is because, the generation of 
artificial images directly contributes to increase the capacity 
for the generalization of the Deep Learning model and thus 
decrease the chance of overfitting [4, 9]. In this respect, one 
of the challenges of using Data Augmentation is the defini-
tion of which transformations (such as zoom, rotation, flip) 
will be applied to the images [6, 28, 34, 44, 48]. In terms 
of Machine Learning, this problem can be treated as in the 
area of Hyperparameter Tuning [19, 20, 27, 30, 31, 39, 40].

In the literature, some studies have analyzed the influ-
ence of Data Augmentation hyperparameter combinations 
in different applications, such as: plant classification [34], 
transmission line inspection [44] and covid-19 diagnostic 
process in chest X-ray radiological imaging [28]. In [48], 
different types of Data Augmentation methods were ana-
lyzed for crack detection in constructions. However, the 
literature lacks proposals to optimize the combinations of 
Data Augmentation hyperparameters for the application of 
Deep Learning in building construction image classifica-
tion, especially in the recognition of vegetation on building 
facades and roofs defects classification.

The objective of this paper is to propose a rigorous meth-
odology for tuning of Data Augmentation hyperparameters 
in Deep Learning to building construction image classifi-
cation with small data sets. For this, two case studies are 
observed: vegetation recognition in facades [32] and roofs 
structures analysis [33]. In order to do that, Logistic Regres-
sion models [16] will be used to analyze the performance of 
Convolutional Neural Networks (CNN) [4, 9] trained from 
128 combinations of transformations in the images. For 
comparison purposes, three CNN architectures from the lit-
erature will also be adopted: MobileNet [17], DenseNet-121 
[18] e CNN8 [32].

This paper is organized into five sections. Section 2 pre-
sents theoretical concepts of CNNs and Logistic Regression. 
Section 3 presents the proposed methodology. Sections 4 
and 5 describe the results and conclusions, respectively.

2 � Theoretical foundation

2.1 � Convolutional neural networks

Convolutional neural networks (CNNs) are Deep Learning 
methods with several researches in computer vision field [4, 
9, 15, 23]. One of the main factors that make CNNs a rel-
evant Machine Learning technique is the ability to automati-
cally extract features from processed images [9]. In addition, 
another important point is the use of layers and elements 

with different functionalities in the network architecture, 
such as [4, 9]:

–	 Input layer: receives input signals (e.g .: image).
–	 Weights: adjusted during the training process (trainable 

parameters).
–	 Convolutional filters (kernels): have a set of weights, 

according to their size. For example, if the kernel size is 
3 × 3 , then the filter contains 9 trainable weights.

–	 Activation function: transforms a signal into a limited 
output. Some examples are the functions ReLu, softmax 
and sigmoid.

–	 Convolutional Layer: applies the convolution operation 
between the filters and the input matrix in the layer. As an 
output, new matrices are generated (feature map), accord-
ing to the number of kernels in the layer.

–	 Pooling: applies a transformation to decrease the input 
matrix dimensions. For this, statistical functions can be 
used: maximum (max) or average (avg).

–	 Flatten: transforms the matrices resulting from convolu-
tional operations into a single vector.

–	 Dropout: randomly disconnects a set of neurons at each 
training epoch.

–	 Fully connected layers: similar to the structures of tradi-
tional Artificial Neural Networks, in which, all neurons 
and layers are connected.

–	 Output layer: shows the output of CNN, such as a binary 
classifier neuron.

Thus, in view of the complexity of the CNN architectures, 
an important factor is the use of tools for efficient implemen-
tation [4, 9]. In this line, it is worth mentioning the Keras 
library [4]. Keras is available on R interface1 and Python 
language for development of Deep Learning applications. 
In addition, it allows execution on CPU or GPU. Another 
relevant factor is the simplicity to use Data Augmentation 
methods. In this sense, the Keras library was adopted in this 
work, as described in Sect. 3.

2.2 � Logistic regression

The methods based on Linear Regression (simple and mul-
tiple) aim to model a continuous output from one or more 
independent variables [29]. On the other hand, Logistic 
Regression is a technique addressed for the analysis of cat-
egorical data [13, 16]. Moreover, in a logistic function, the 
variable response is binary or dichotomous.

The Logistic Regression model can be represented by Eq. 
(1) [13]:

1  https://​keras.​rstud​io.​com/.

https://keras.rstudio.com/
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where, �
0
 to �k are the coefficients of the regression model; 

x are the independent variables; and p(x) is the probabil-
ity of success. Thus, if p(x) is the probability of an event 
occurring, then the expression 1 − p(x) represents the prob-
ability of an event not occurring. The ratio between p(x) and 
1 − p(x) is called chance (Eq. (2)) [13]:

In this line, the neperian logarithm of chance provides a 
linear model, according to Eq. (3) [13]:

where, this equation is called logit and is a simplification of 
the Logistic Regression model.

3 � Methodology

3.1 � Database of the first case study

In this study, the database presented by [32] was used for 
training, validation and testing of Convolutional Neural Net-
works in the recognition of vegetation on building facades. 
The dataset has 390 images, divided into two classes: 

1.	 Class 0: without vegetation on the building’s facade.
2.	 Class 1: with vegetation on the building’s facade.

(1)p(x) =
exp(�0 +

∑m

k=1
�kxk)

1 + exp(�0 +
∑m

k=1
�kxk)

(2)chance =
p(x)

1 − p(x)

(3)ln

[
p(x)

1 − p(x)

]
= �0 +

m∑
k=1

�kxk

According to [32], the images of the training and valida-
tion datasets were defined from photographs adapted from 
The Zurich Urban Micro Aerial Vehicle Dataset [26]. These 
images were recorded in 2015 by an vant from the urban 
streets of Zurich (Switzerland). On the other hand, the 
images of the test dataset were selected from the website 
Pixabay.2 The dataset analyzed during the current study are 
available from the corresponding author on request or in 
the web link:

–	 drive.google.com/file/d/1l6KA80mZdKqxlpfpenIH57m
CYESL3uyq/

Figures 1 and 2 present examples of images from the data-
base of classes 0 and 1, respectively.

The database (390 images) was partitioned following the 
same structure proposed by [32]:

–	 Training (250 images): 125 images in class 0 (without 
vegetation) and 125 images in class 1 (with vegetation).

–	 Validation (50 images): 25 images in class 0 (without 
vegetation) and 25 images in class 1 (with vegetation).

–	 Test (90 images): 45 images in class 0 (without vegeta-
tion) and 45 images in class 1 (with vegetation).

3.2 � Data augmentation

Data preprocessing is an important stage in the Machine 
Learning field [9]. This is because, this step can decrease 
the learning complexity and improve the accuracy results 

Fig. 1   Examples of images of 
the class 0 - without vegetation 
on the facade

2  www.​pixab​ay.​com.

http://www.pixabay.com
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[9]. In this line, Data Augmentation techniques can be used 
in the training of CNNs [4, 9, 42, 51, 52].

Data Augmentation is an approach applied mainly to 
small data learning [4, 42]. In this sense, Data Augmenta-
tion methods generate more data for training from the exist-
ing images [4]. The aim is to increase the CNN model’s 
ability to generalize and avoid overfitting [4, 9]. For this, 
artificial images are created from random transformations 
in the original data [4]. Zoom, rotation and flip are some 
examples of possible transformations for the generation of 
augmented images [9].

In this paper, Data Augmentation methods were applied 
from Keras library in R software [4]. For this, a image_
data_generator() method was adopted [4]. The function 
image_data_generator() generates batches of data with new 
modified images from the original data. In this regard, the 
following random transformations3 were used to increase 
training data [4]:

–	 Rotation range: an integer number that defines the 
degree range for random rotations. Rotation is a circular 
movement around a fixed point. The processing images 
will have random rotations on a predefined range of 
degrees according with data entrance.

–	 Horizontal flip: if this input is“true”them the images 
will be randomly mirrored in the horizontal direction 
(left-right).

–	 Vertical flip: if this input is“true”them the images will be 
randomly mirrored in the vertical direction (up-bottom).

–	 Shear range: distort the image along an axis to create or 
rectify the perception angles. There are two shear trans-

formation, X-Shear that shift X coordinates values and 
Y-Shear that’s shift Y coordinates values.

–	 Width shift range: shifts the image randomly to the left 
or to the right (horizontal shifts). If the value is float and 
≤ 1 it will take the percentage of total width as range. 
For example, in an image that width is 100 pixels and if 
width_shift_range = 1.0 then it will shift image randomly 
between -100% to 100% or -100px to 100px. Positive 
values will shift the image to the right side and negative 
values will shift the image to the left side.

–	 Height shift range: shifts the image randomly to up or 
down (vertically shifts). If the value is float and ≤ 1 it will 
take the percentage of total height as range. For example, 
in an image that height is 100 pixels and if height_shift_
range = 1.0 then it will shift image randomly between 
-100% to 100% or -100px to 100px. Positive values will 
shift the image to the upside and negative values will 
shift the image to underside.

–	 Zoom range: it will do a randomly augmentation of the 
image adding new pixels values. It can be specified with 
the percentage of the zoom as single float or a range as an 
array. For example, if zoom_range = 0.4 the range will be 
[0.6, 1.4] between 60% (zoom in) or 140% (zoom out).

Figure 3 presents examples of images generated by Data 
Augmentation with the Keras library.

The number of artificially generated images depends on 
training settings: batch_size , steps_per_epoch and epoch. For 
example, in this study, these parameters were defined in first 
phase of experiments as: batch_size = 32; steps_per_epoch 
= 100; and epoch = 10. Thus, for each simulation were gen-
erated randomly around 32,000 new images for training. 
This value is more than 100 times greater than the number 
of original photographs for training (250).

Fig. 2   Examples of images of 
the class 1 - with vegetation on 
the facade

3  https://​keras.​rstud​io.​com/​refer​ence/.

https://keras.rstudio.com/reference/.
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3.3 � Neural network architectures

In this paper, three CNNs architectures were adopted: 
CNN-8 [32], DenseNet-121 [18] and MobileNet [17]. 
Recently, these structures (or variations) are discussed in 
some papers in research field of building construction image 
processing with deep learning, such as, in the tasks: crack 
detection (DenseNet) [46], structural health monitoring (FC-
DenseNet) [38], detecting safety helmet (SSD MobileNet) 
[41], road damage detection (SSD MobileNet) [25] and rec-
ognition of vegetation in buildings (CNN-8) [32].

In this study, CNN architectures were used for binary 
classification, for example, class 0 (without vegetation 
on the building’s facade) and class 1 (with vegetation 
on the building’s facade) [32]. For this, the keras_model 

_sequential() method in the Keras library was used [4], as 
described below:

–	 CNN-8: CNN architecture used by [32] to vegetation 
image recognition in buildings. The structure has 8 
layers and 3,985,345 trainable parameters. In addition, 
this architecture is based on a model proposed by [4], 
originally with 12 layers.

–	 DenseNet-121: Dense Convolutional Network is an 
architecture proposed by [18]. This structure is char-
acterized by connecting each layer to all other layers 
(dense connection). Moreover, it has 7,479,169 train-
able parameters. To use this architecture, the applica-
tion_densenet121() method in the Keras library was 
adopted.

Fig. 3   Examples of images 
generated by Keras data aug-
mentation: a original image; 
b–d rotation range ( R = 40 ); e 
horizontal flip ( H = TRUE ); f 
vertical flip ( V = TRUE ); g and 
h height shift range ( He = 0.2 ); 
l shear range ( S = 0.2 ); j–l 
width shift range ( W = 0.2 ); 
m–p zoom range ( Z = 0.2)
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–	 MobileNet: CNN architecture proposed by [17] for 
mobile and embedded vision applications. The structure 
uses deptwise separable convolutions (factorized con-
volutions). In addition, it has 28 layers and 3,732,289 
trainable parameters. To use this architecture, the appli-
cation_mobilenet() method in the Keras library was 
adopted.

In all experiments, CNN architectures were trained with an 
adagrad optimizer and a learning rate of 0.01. In addition, 
the dimensions 50 × 50 × 3 were standardized as input to the 
neural network: input_shape = c(50, 50, 3). It is also note-
worthy that all three architectures were configured with the 
last two layers as fully connected. In the last layer having the 
binary classifier neuron with sigmoid activation function [4].

3.4 � Hyperparameter tuning

3.4.1 � Design of experiments

In this section, the design of experiments for tuning of data 
augmentation hyperparameters with Logistic Regression 
[16] is described. The simulations of the Convolutional Neu-
ral Network models were conducted in the R software [35] 
with the Keras library [4]. For this, an Intel Core i7-8565 
(CPU) and NVIDIA GeForce MX110 (GPU) were used.

For the experiments evaluation were used three metrics: 
accuracy in validation or testing (Acc), number of images 
correctly classified (C) and number of images incorrectly 
classified, that is, errors (E). Equations (4) to (6) present 
these formulas.

where,

–	 TP: true positives, that is, correct classifications in class 
1 (facade with vegetation).

–	 FN: false negatives, that is, incorrect classifications in 
class 1 (facade with vegetation).

–	 TN: true negatives, that is, correct classifications in class 
0 (facade without vegetation).

–	 FP: false positives, that is, incorrect classifications in 
class 0 (facade without vegetation).

The experiments were conducted in three stages: 

1.	 Data Augmentation Hyperparameters.

(4)Acc =
TP + TN

TP + TN + FP + FN
,

(5)C = TP + TN,

(6)E = FP + FN,

2.	 Data Augmentation and CNN Architectures.
3.	 Test Experiments.

In the first phase, seven hyperparameters were defined for 
adjustment, each with two levels of treatments (0 - without 
transformation and 1 - with transformation):

–	 Rotation Range (R): 0 or 40.
–	 Horinzontal Flip (H): FALSE or TRUE.
–	 Vertical Flip (V): FALSE or TRUE.
–	 Height Shift Range (He): 0 or 0.2.
–	 Shear Range (S): 0 or 0.2.
–	 Width Shift Range (W): 0 or 0.2.
–	 Zoom Range (Z): 0 or 0.2.

Thus, a total of 128 ( 27 ) combinations of data augmentation 
hyperparameters were analyzed in the first stage. For each 
configuration, five CNN models (repetitions) were trained 
in 10 epochs with 100 steps (steps por epoch) adopting the 
MobileNet architecture [17]. The metrics observed in this 
phase were the total number of images correctly classified 
(C) and errors (E) in the validation dataset, used to adjust a 
Logistic Regression model.

In the second stage of experiments, the best combina-
tions of the first phase were used. In addition, three CNN 
architectures from the literature were adopted: MobileNet 
[17], DenseNet-121 [18] e CNN8 [32]. For each combina-
tion (configuration of data augmentation × architecture), 5 
repetitions were performed with 20 epochs. The total cor-
rect classifications (C) and errors (E) were observed in the 
validation dataset. Furthermore, the accuracy (Acc) in the 
validation step was also analyzed.

Finally, in the third phase of experiments, the hyperpa-
rameter combinations performance were analyzed in the test 
dataset. In this sense, new trainings were carried out with the 
data augmentation configurations selected in 5 repetitions 
with 30 epochs. For each of the CNN models trained in this 
phase, the accuracy in the classification of the test database 
was analyzed.

3.4.2 � Logistic regression method

In this paper, the method for hyperparameter tuning uses 
Logistic Regression [16]. The objective is to evaluate the 
probability of hits and errors in the building construction 
image classification, according to the settings of data aug-
mentation. For this, the response variable (y) is binary and 
was modeled as follows:

y =

{
1 ∶ correct image classification .

0 ∶ incorrect image classification .
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For the first step, the explanatory variables ( x1 , x2 , x3 , x4 , 
x5 , x6 and x7 ) refer to the seven hyperparameters analyzed:

The Equation (7), in turn, presents the Logistic Regression 
model (logito format) proposed for the recommendation of 
hyperparameters:

The coefficients ( � ) of Eq. (7) can be obtained by the maxi-
mum likelihood method [13]. Then, the regression coeffi-
cients hypothesis test must be performed. In this sense, the 
significance of the effects of each variable present in the 
model is analyzed in two hypotheses:

When the initial hypothesis ( H0 ) is accepted ( p > 0.05 ), the 
variable xk (associated with the �k coefficient) does not have 
statistical significance in the model. On the other hand, if 
the alternative hypothesis is accepted ( p < 0.05 ), the hyper-
parameter (k) has significance in the Logistic Regression 
model.

The adjusted coefficients ( � ) also may perform the calcula-
tions of the odds associated with each hyperparameter configu-
ration. In this aspect, the OR metric represents the odds ratio 
of correct classification between the two levels of a hyper-
parameter. For example, the odds ratio for hyperparameter 1 
(Rotation Range) is given by Eq. (8):

where OR1 is the odds ratio of level 1 ( R = 40 ) in relation 
to level 0 ( R = 0 ) of hyperparameter 1 (Rotation Range). 
Thus, if OR1 > 1 the chance of success in adopting R = 40 
is greater than R = 0 . Otherwise ( OR1 < 1 ), then the chance 
of CNN correctly classifying an image is greater if trained 
without the rotation transformation. A similar analysis can 
be made after calculating the odds ratio of the other analyzed 
hyperparameters. Thus, Eq. () presents the general formula-
tion for the odds ratio:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

x1 ∶ Rotation Range (R)

x2 ∶ Horizontal Flip (H)

x3 ∶ Vertical Flip (V)

x4 ∶ Height Shift Range (He)

x5 ∶ Shear Range (S)

x6 ∶ Width Shift Range (W)

x7 ∶ Zoom Range (Z)

(7)
ln

[
p(x)

1 − p(x)

]
=�

0
+ �

1
x
1
+ �

2
x
2
+ �

3
x
3

+……+ �
4
x
4
+ �

5
x
5
+ �

6
x
6
+ �

7
x
7

{
H0 ∶ �k = 0,

Ha ∶ �k ≠ 0.

(8)OR1 = exp(�1),

(9)ORk = exp(�k).

Therefore, odds ratio indices are used to define hyperpa-
rameter configurations for the sequence of experiments, as 
will be described in the next subsection (HPtuningLogReg 
Algorithm).

In the sequence, logistic regression models are also used 
to analyze the results of the second stage of experiments. 
In this case, the objective is to evaluate the influence of the 
selected hyperparameter combinations for the three CNN 
architectures adopted (CNN8 [32], DenseNet-121 [18] and 
MobileNet [17]). For this, three logistic regression models 
are adjusted (one per architecture) and the odds ratio indices 
for the hyperparameter configurations are observed.

3.4.3 � HPtuningLogReg algorithm

Algorithm 1 presents the method proposed in R language for 
tuning of data augmentation hyperparameters with Logistic 
Regression: HPtuningLogReg Algorithm. The code has been 
divided into four steps: data input, adjustment of the logistic 
regression model, hyperparameter tuning and summary.

In the first phase (lines 1 to 14), the results of the experi-
ments are read and prepared for the method sequence. 
The“correct”and “error”vectors store the number of correct 
and incorrect classifications, respectively, for each of the 
observed hyperparameter configurations.

Then, in line 16, the function glm of the R language 
is used to adjust the Logistic Regression model. In addi-
tion, the anova method (line 17) is also used to perform 
statistical tests of analysis of variance and to calculate the 
p − value (“paov”). In sequence, from the adjusted coeffi-
cients (“modelglm$coefficients”), the odds ratio measures 
are calculated (line 18).

In phase 3 (lines 19 to 45), the Logistic Regression 
model is adopted to hyperparameter tuning. For this, a 
repetition loop is performed by varying the hyperparam-
eter index (data augmentation transformation type): 1 - R, 
2 - H, 3 - V, 4 - He, 5 - S, 6 - W and 7 - Z. In line 21, the 
statistical significance of the variable present in the model 
is analyzed. If the alternative hypothesis ( H1 ) is accepted 
(“paov$‘Pr(>Chi)‘[i+1]< 0.05 ”) there is significance for the 
coefficient �k , that is, there is a statistical difference between 
the two treatments of the hyperparameter k. In this case, the 
value of the odds ratio is presented and then recommended 
hyperparameter level with the greatest chance of success 
in the validation dataset image classification (lines 22 to 
35). On the other hand, if initial hypothesis ( H0 ) is accepted 
(lines 36 to 45), there is no statistically significant difference 
between the two values of the hyperparameter k ( p > 0.05 ). 
Finally, default treatment (“H[i,2]”) is recommended, that 
is, the transformation k in the data augmentation process 
should not be applied.

In step 4, a summary of the recommended hyperparame-
ter values is presented. In this case, only the hyperparameters 
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whose decision variables received level 1 (C[i] == 1) in step 
3 are shown. 

1 # Step 1: Data Input
2 dat <- read.delim(”data.txt”)
3 attach(dat)
4 dadosf< −

as.data.frame(cbind(correct,error,R,H,V,He,S,W,Z))
5 attach(datf)
6 h1< −c(”Hyper1 - Rotation Range (R)”, ”0”, ”40”)
7 h2< −c(”Hyper2 - H. Flip (H)”, ”FALSE”, ”TRUE”)
8 h3< −c(”Hyper3 - V. Flip (V)”, ”FALSE”, ”TRUE”)
9 h4< −c(”Hyper4 - Height Shift R. (He)”, ”0”, ”0.2”)

10 h5< −c(”Hyper5 - Shear Range (S)”, ”0”, ”0.2”)
11 h6< −c(”Hyper6 - Width Shift R. (W)”, ”0”, ”0.2”)
12 h7< −c(”Hyper7 - Zoom Range (Z)”, ”0”, ”0.2”)
13 h< −rbind(h1, h2, h3, h4, h5, h6, h7)
14 C< −c(0,0,0,0,0,0,0)
15 # Step 2: Logistic Regression Model
16 modelglm< −

glm(cbind(strtoi(correct),strtoi(error))∼
R+H+V+He+S+W+Z,
family=binomial(link=”logit”), data=datf)

17 paov< −anova(modelglm, test=”Chisq”)
18 OR < − exp(modelglm$coefficients)
19 # Step 3: Hyperparameter Tuning
20 for (i in 1:7){
21 if (paov$‘Pr(>Chi)‘[i+1]< 0.05){
22 print(”Hyperparameter Tuning Reglog”)
23 print(h[i])
24 print(”With statistical significance (p < 0.05)”)
25 print(”Beta:”)
26 print(modelglm$coefficients[i+1])
27 print(”Odds Ratio:”)
28 print(OR[i+1])
29 print(”Recommended hyperparameter:”)
30 if (OR[i+1]<1){
31 print(h[i,2])
32 }else{
33 print(h[i,3])
34 C[i]<-1
35 }
36 }else{
37 print(”Hyperparameter Tuning Reglog”)
38 print(h[i])
39 print(”No statistical significance (p > 0.05)”)
40 print(”Beta:”)
41 print(modelglm$coefficients[i+1])
42 print(”Recommended hyperparameter:”)
43 print(h[i,2])
44 }
45 }
46 # Step 4: Hyperparameter Tuning - Summary
47 for (i in 1:7){
48 if (C[i] == 1){
49 print(”Hyperparameter Tuning - Summary”)
50 print(h[i])
51 print(h[i,3])
52 }
53 }
Algorithm 1: HPtuningLogReg in R language.

3.5 � Hyperparameter tuning to second small dataset

In this case study, another type of problem in buildings was 
analyzed: gutter integrity and cleanliness pathology in roofs 
[43]. For this, images were used from the database presented 
and described by [33, 43, 45] and made available by the 
Research Group in Construction Technology and Manage-
ment (School of Engineering - UFBA).4 These images were 
captured from roof inspections with an unmanned aerial 
vehicle.

In a previous study, [33] used this dataset in experi-
ments to tuning of two CNN hyperparameters (learning rate 
and optimizer). For this, the images were divided into two 
classes: (0) roofs with clean gutters and (1) roofs with dirty 
gutters. Thus, the database adopted by [33] has 220 images, 
separated for the training, validation and test phases:

–	 Training (160 images): 80 images in class 0 and 80 
images in class 1.

–	 Validation (30 images): 15 images in class 0 and 15 
images in class 1.

–	 Test (30 images): 15 images in class 0 and 15 images in 
class 1.

Figures 4 and 5 present examples of images (two classes) of 
the second small dataset.

In this sense, the Hyperparameter Tuning methodology 
(Section 3.4) was adopted in new experiments with this sec-
ond case study. Then, HPtuningLogReg was applied to tun-
ing of Data Augmentation hyperparameters.

The dataset analyzed during the second case study is 
available from the corresponding author on request or in 
the web link:

–	 https://​abre.​ai/​datas​et2

4 � Results

4.1 � Results of first small dataset

This section presents the results for the first case study: rec-
ognition of vegetation on building facades.

4.1.1 � Stage 1: Data augmentation hyperparameters

In stage 1, HPtuningLogReg algorithm was adopted to 
adjust the logistic regression model and tuning of Data 
Augmentation hyperparameters. For this, results of 128 

4  getec.eng.ufba.br.

https://abre.ai/dataset2
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hyperparameters combinations analyzed were used. The 
Equation (10) presents the adjusted linear model (logito).

Table 1 shows the results of the test statistic (p), recom-
mended values and odds ratio (OR) per hyperparameter.

The results of Table 1 shows that the effects related to 
transformations of Rotation Range and Shear Range have 
no statistical effect ( p > 0.05 ). Thus, the algorithm recom-
mended the use of the default value for these hyperparam-
eters ( R = 0 and S = 0 ). On the other hand, the effects of 
the variables referring to Horizontal Flip and Vertical Flip 
showed statistical significance ( p < 0.05 ). However, the 
odds ratio values for these hyperparameters were less than 1 
( OR < 1 ). Thus, HPtuningLogReg algorithm recommended 
the use of H = 0 and V = 0.

Table 1 also presents the results for the other three trans-
formations: Height Shift Range, Width Shift and Zoom. 

(10)

y =�
0
+ �

1
x
1
+ �

2
x
2
+ �

3
x
3
+ ⋅

⋅ +�
4
x
4
+ �

5
x
5
+ �

6
x
6
+ �

7
x
7

=1.524 − 0.005x
1
− 0.118x

2
− 0.130x

3
+ ⋅

⋅ +0.179x
4
− 0.0085x

5
+ 0.114x

6
+ 0.111x

7

The effects of these variables were statistically significant 
( p < 0.05 ). The recommended value of Height Shift method 
was 0.2 with an estimated odds ratio of 1.196. In this respect, 
the adjusted model reveals that adopting the level xHe = 1 
has around 20% more chances of success in the image clas-
sification, in relation to not adopting this transformation in 
the training base. The adjusted values for Width Shift and 
Zoom were also 0.2, with odds ratios of 1.121 and 1.118, 
respectively. Thus, it is estimated that the chance of cor-
rect image classification when using W = 0.2 or Z = 0.2 is 
around 12% greater than performing the training without 
these Data Augmentation effects.

Thus, from the Logistic Regression results, the HPtun-
ingLogReg algorithm recommended three transformations 
in the images for the training process: Height Shift Range, 
Width Shift Range e Zoom Range. These hyperparameters 
analyzed at two levels each, result in eight combinations 
of Data Augmentation transformations ( 2 × 2 × 2 ). Table 2 
presents these combinations set and their respective levels 
of decision variables

The hyperparameter combinations presented in Table 2 
were used in the next stage of experiments, as shown in the 
following section.

4.1.2 � Stage 2: Data augmentation and CNN architectures

In stage 2, the hyperparameter combinations defined in the 
previous phase were evaluated in conjunction with three 
architectures in the literature: CNN8 [32], DenseNet-121 
[18] and MobileNet [17]. Table 3 presents the results of 
accuracy in the validation step and the statistical metrics of 
the logistic regression models (OR and p).

From the Table 3 it is possible to observe that the highest 
accuracy average ( 87.6% ) for the CNN8 architecture was 

Fig. 4   Examples of images of 
the class 0 (roofs with clean 
gutters) in second small dataset

Fig. 5   Examples of images of 
the class 1 (roofs with dirty gut-
ters) in second small dataset

Table 1   Results of Data Augmentation hyperparameter tuning with 
logistic regression in stage 1.

Bold values indicate the hyperparameters with OR > 1 and p < 0.05

Hyperparameter � p Value x OR

Rotation R. (R) – 0.005 0.86 0 0 0.995
Hor. Flip (H) – 0.118 0.00 False 0 0.888
Vertical Flip (V) – 0.130 0.00 False 0 0.878
Height S. R. (He) 0.179 0.00 0.2 1 1.196
Shear Range (S) – 0.008 0.79 0 0 0.992
Width S. R. (W) 0.114 0.00 0.2 1 1.121
Zoom Range (Z) 0.111 0.00 0.2 1 1.118
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achieved by adopting the combination 7 ( He = 0.2 ; W = 0.2 ; 
Z = 0 ). In this case, adopting configuration 7 has approxi-
mately 2 times more chances of success ( OR = 2.374 ) in 
the classification in relation to the reference combination 
( He = 0 ; W = 0 ; Z = 0 ). It is also noteworthy that the four 
combinations (4, 5, 7 and 8) showed statistical significance 
( p ≤ 0.05 ). On the other hand, when analyzing the results 
of DenseNet-121 in the Table 3, the highest mean accuracy 
( 94.0% ) was obtained by the combination 8. In addition, only 
this configuration ( He = 0.2 ; W = 0.2 ; Z = 0.2 ) was statis-
tically significant (level of 5% ). The experiments with the 
MobileNet architecture, revealed that adopt the configuration 

8 has around 3 times more chances of success ( OR = 3.117 ) 
in image classification. Moreover, five combinations (2, 3, 
5, 6, 7 and 8) are statistically different ( p ≤ 0.05).

In this sense, configuration 8 ( He = 0.2 ; W = 0.2 ; 
Z = 0.2 ) was the only to present statistical significance 
for the three architectures. In addition, the odds ratio for 
this combination was over 1.9 for CNN8, DenseNet-121 
and MobileNet. Thus, combination 8 was selected for the 
sequence of experiments in the test stage.

To illustrate, Figs. 6 and 7 present samples of images 
generated by Data Augmentation, adopting the combination 
8: He = 0.2 ; W = 0.2 ; Z = 0.2.

Table 2   Hyperparameter 
combinations of data 
augmentation selected in stage 1

Comb. He W Z xHe xW xZ

1 0 0 0 0 0 0
2 0 0 0.2 0 0 1
3 0 0.2 0 0 1 0
4 0 0.2 0.2 0 1 1
5 0.2 0 0 1 0 0
6 0.2 0 0.2 1 0 1
7 0.2 0.2 0 1 1 0
8 0.2 0.2 0.2 1 1 1

Table 3   Results of validation 
accuracy ( % ) and statistical 
metrics for each method 
(CNN architecture + data 
augmentation combination)

Bold values indicate the data augmentation combinations with p < 0.05

Arch. Comb. 1 2 3 4 5 Mean OR p

1 78.0 78.0 78.0 76.0 82.0 78.4 1.000 –
2 86.0 82.0 78.0 78.0 76.0 80.0 1.102 0.66
3 86.0 82.0 86.0 86.0 84.0 84.8 1.537 0.07

CNN8 4 92.0 88.0 86.0 84.0 92.0 88.4 2.099 0.00
5 84.0 90.0 80.0 86.0 86.0 85.2 1.586 0.05
6 84.0 84.0 84.0 86.0 82.0 84.0 1.445 0.11
7 90.0 92.0 88.0 90.0 88.0 89.6 2.374 0.00
8 88.0 88.0 86.0 90.0 86.0 87.6 1.946 0.01
1 88.0 84.0 90.0 88.0 84.0 86.8 1.000 –
2 90.0 86.0 94.0 92.0 84.0 89.2 1.256 0.41
3 92.0 92.0 88.0 90.0 86.0 89.6 1.310 0.33

DenseNet-121 4 90.0 88.0 86.0 90.0 92.0 89.2 1.256 0.41
5 86.0 90.0 94.0 88.0 86.0 88.8 1.206 0.49
6 90.0 88.0 90.0 88.0 92.0 89.6 1.310 0.33
7 90.0 94.0 92.0 92.0 90.0 91.6 1.658 0.09
8 92.0 96.0 96.0 92.0 94.0 94.0 2.382 0.01
1 76.0 74.0 76.0 78.0 76.0 76.0 1.000 –
2 84.0 88.0 88.0 88.0 90.0 87.6 2.231 0.00
3 82.0 84.0 90.0 82.0 78.0 83.2 1.564 0.05

MobileNet 4 92.0 88.0 90.0 88.0 90.0 89.6 2.720 0.00
5 82.0 80.0 78.0 84.0 82.0 81.2 1.364 0.16
6 84.0 86.0 86.0 86.0 90.0 86.4 2.006 0.00
7 88.0 92.0 88.0 86.0 94.0 89.6 2.721 0.00
8 92.0 90.0 90.0 92.0 90.0 90.8 3.117 0.00
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Fig. 6   Examples of images 
generated by data augmentation 
( He = 0.2 ; W = 0.2 ; Z = 0.2 ) 
for class 0 (without vegetation 
on the building facade)

Fig. 7   Examples of images 
generated by data augmentation 
( He = 0.2 ; W = 0.2 ; Z = 0.2 ) 
for class 1 (with vegetation on 
the building facade)

Table 4   Maximum accuracy 
in the test step in each of the 
repetitions and respective mean 
accuracy (M) for first small 
dataset

Bold values indicate the best result of test accuracy and mean accuracy
Comparison between methods recommended by the data augmentation configurations (Proposed (P) and 
Literature (L)) and architectures

Arch. C. 1 2 3 4 5 M.

CNN8 P 95.6 87.8 92.2 93.3 91.1 92.0
CNN8 L 91.1 80.0 93.3 91.1 93.3 89.8
DenseNet P 77.8 77.8 73.3 83.3 65.6 75.6
DenseNet L 87.8 77.8 83.3 71.1 70.0 78.0
MobileNet P 71.1 65.6 81.1 74.4 63.3 71.1
MobileNet L 54.4 87.8 58.9 55.6 53.3 62.0
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4.1.3 � Tests results

In this step, simulations were performed out on the test 
dataset adopting three architectures (CNN8, DenseNet-121 
and MobileNet) and two data augmentation configurations:

–	 Proposed in this paper (P) - defined from steps 1 and 2 
(Hyperparameter Tuning): ( He = 0.2 ; W = 0.2 ; Z = 0.2).

–	 Literature (L) - presented in [4] and used by [32] for 
the same dataset of this study: ( R = 40 ; H = TRUE ; 
He = 0.2 ; S = 0.2 ; W = 0.2 ; Z = 0.2).

Table 4 presents the accuracy in test step for each analyzed 
configurations.

From the Table 4 it is possible to observe that the high-
est accuracy average ( 92.0% ) was achieved by the CNN8 
architecture when adopting the proposed data augmenta-
tion combination. Moreover, this configuration (CNN8 + 
P) also resulted in the highest accuracy value in one repeti-
tion: 95.6% . This value is equivalent to the correct classifi-
cation of 86 images out of a total of 90 photographs on the 
test dataset. In this sense, Table 5 presents the confusion 
matrix for the adoption of CNN8 + P (Repetition 1).

It can be seen in Table 5 that the CNN model correctly 
classified 43 images in the positive class and 43 images 
in the negative class (accuracy of 95.6% ). Thus, for each 
class, CNN only missed 2 images in the test dataset (error 
around 4.44% ). It is also worth noting that, in the study 
of [32], the maximum accuracy achieved was 90% for the 
same test images. Thus, indicating that the careful adjust-
ment of the Data Augmentation hyperparameters can 
increase the results in the classification.

Table 6 summarizes the recommended hyperparameters 
for the analyzed database.

4.2 � Results of second small dataset

This section report the results of applying the proposed 
methodology in a second small dataset: gutter integrity in 
roofs structures. In this sense, the Equation 11 presents the 
linear model adjusted for this case study:

Table 7 shows the results of the test statistic (p), recom-
mended values and odds ratio (OR) per hyperparameter 
(second small dataset).

Table  7 shows that the only hyperparameter recom-
mended by the HPtuningLogReg algorithm for the second 
case study was Shear Range (S), because p < 0.05 and 
OR > 1 . On the other hand, four transformations did not 
reach statistical significance ( p > 0.05 ): Horizontal Flip 
(H), Vertical Flip (V), Height Shift Range (He) and Width 
Shift Range (W). In addition, two hyperparameters achieved 
statistical effect ( p < 0.05 ), but obtained OR < 1 : Rotation 
Range (R) and Zoom Range (Z).

In this regard, the test stage was carried out with two Data 
Augmentation configurations:

–	 Proposed in this paper (P) - Hyperparameter Tuning for 
second small dataset: S = 0.2.

–	 Literature (L) - presented in [4] and used by [33]: R = 40 ; 
H = TRUE ; He = 0.2 ; S = 0.2 ; W = 0.2 ; Z = 0.2.

Table 8 presents the accuracy results of test step to second 
small dataset.

Table 8 shows that the highest average accuracy ( 88.0% ) 
for second case study was achieved by the CNN8 architec-
ture with the proposed configuration. Moreover, this Data 
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Table 5   Confusion matrix with 
the best results for the test step 
(first small dataset)

Bold values indicate the number 
of true positives (TP) and true 
negatives (TN)

TP = 43 FN = 2

FP = 2 TN = 43

Table 6   Selected hyperparameters for first small dataset

Hyperparameter Recommendation

Architecture CNN8
Height Shift Range (He) 0.2
Width Shfit Rang (W) 0.2
Zoom Range (Z) 0.2

Table 7   Results of data augmentation hyperparameter tuning with 
logistic regression (second small dataset)

Bold value indicates the hyperparameters OR > 1 and p < 0.05

Hyperparameter � p Value x OR

Rotation R. (R) – 0.245 0.00 0 0 0.783
Hor. Flip (H) 0.071 0.07 False 0 1.074
Vertical Flip (V) – 0.027 0.48 False 0 0.973
Height S. R. (He) – 0.008 0.85 0 0 0.992
Shear Range (S) 0.089 0.02 0.2 1 1.094
Width S. R. (W) – 0.024 0.53 0 0 0.976
Zoom Range (Z) – 0.091 0.02 0 0 0.913
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Augmentation combination ( S = 0.2 ) achieved the maxi-
mum accuracy value in one iteration: 93.3%.

4.3 � Comparison with other studies

In this section, a comparative study is carried out between 
the present proposal and other recent works in the litera-
ture: I [32], II [3], III [48], IV [36] and V [54]. For this, 
five features were observed: CNN application (classifica-
tion, detection or segmentation), type of problem, analyzed 
hyperparameters and tuning of Data Augmentation methods. 
All analyzed paper applied Deep Learning models for image 
processing of building construction. Table 9 presents the 
comparison results.

From the Table 9 it is confirmed that the main contribu-
tion of this paper is the proposal of a methodology for tuning 
of data augmentation hyperparameters to building construc-
tion image classification, especially in vegetation recognition 

and roofs defects classification. In another way, it should be 
noted that most of the other studies in this area are dedicated 
to the problem of crack detection (or segmentation).

Furthermore, this proposal innovates by analyzing 128 
( 27 ) combinations of hyperparameters from seven Data 
Augmentation transformations: rotation range, horizontal 
flip, vertical flip, height shift range, shear range, width shift 
range and zoom range. In general, other papers analyze less 
combinations and transformations of Data Augmentation in 
the building construction image processing field.

Another important contribution is the proposal for the 
application of logistic regression models for hyperparameter 
tuning. The papers by [3] and [48] also present methodolo-
gies for recommending Data Augmentation hyperparam-
eters. However, these studies are applied to other problems 
(crack detection or bridge inspection) and do not adopt logis-
tic regression methods.

Table 8   Maximum accuracy 
in the test step in each of the 
repetitions and respective mean 
accuracy (M) for second small 
dataset

Bold values indicate the best result of test accuracy and mean accuracy
Comparison between methods recommended by the data augmentation configurations (Proposed (P) and 
Literature (L)) and architectures

Arch. C. 1 2 3 4 5 M.

CNN8 P 83.3 93.3 93.3 86.7 83.3 88.0
CNN8 L 56.7 70.0 66.7 56.7 73.3 64.7
DenseNet P 70.0 83.3 90.0 90.0 70.0 80.7
DenseNet L 86.7 86.7 90.0 80.0 86.7 86.0
MobileNet P 70.0 70.0 60.0 70.0 63.3 66.7
MobileNet L 70.0 80.0 73.3 83.3 70.0 75.3

Table 9   Comparison of this 
proposal with different papers 
that applied CNNs in the 
image processing of building 
construction: I [32], II [3], III 
[48] , IV [36] and V [54].

Proposed I II III IV V
[32] [3] [48] [36] [54]

CNN application Classification ✓ ✓ – – – –
Detection – – ✓ ✓ ✓ –
Segmentation – – – – ✓ ✓

Problem Crack detection – – – ✓ ✓ ✓

Bridge inspection – – ✓ – – –
Roofs defects classification ✓ – – – – –
Vegetation in facades ✓ ✓ – – – –

Analyzed Hyperparameters Rotation Range ✓ ✓ ✓ ✓ ✓ ✓

Horinzontal Flip ✓ ✓ ✓ – – ✓

Vertical Flip ✓ – – – – ✓

Height Shift Range ✓ ✓ – – – –
Shear Range ✓ ✓ – – ✓ –
Width Shift Range ✓ ✓ – – – –
Zoom Range ✓ ✓ – – – –
Others – – – ✓ ✓ –

Tuning of Data Augmentation Yes ✓ – ✓ ✓ – –
No – ✓ – – ✓ ✓
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5 � Conclusion

The objective of this paper was to propose a rigorous meth-
odology for tuning of Data Augmentation hyperparameters 
in Deep Learning to small datasets. In this sense, the main 
contributions of this study are:

–	 Careful analysis of Data Augmentation transformations 
in the application of Deep Learning in building image 
classification, especially in the recognition of vegetation 
on facades and roofs defects classification.

–	 Design of experiments with 128 combinations of Data 
Augmentation using the Keras library and the R soft-
ware.

–	 Proposal of the HPtuningLogReg method using Logis-
tic Regression to tuning of Data Augmentation hyper-
parameters.

–	 Comparison of Data Augmentation configurations by 
adopting three Convolutional Neural Network architec-
tures from the literature.

Regarding the results, in the first stage of experiments were 
recommended three Data Augmentation transformations for 
first case study: Height Shift Range (He), Width Shift Rang 
(W) and Zoom Range (Z). According to the Logistic Regres-
sion model, adopting He = 0.2 guarantees an increase of 
around 20% of success in the correct image classification. On 
the other hand, by adopting W = 0.2 or Z = 0.2 the chance of 
success is increased by approximately 12% . Moreover, from 
the second stage of experiments, the configuration ( He = 0.2 ; 
W = 0.2 ; Z = 0.2 ) was the only one to present statistical sig-
nificance ( p ≤ 0.05 ) for the three CNN architectures analyzed.

Finally, in the testing stage, the selected Data Augmenta-
tion configuration reached the highest average accuracy ( 92% ) 
when adopting the CNN8 architecture. In addition, this com-
bination also resulted in the greatest accuracy in one repeti-
tion: 95.6% . This value is equivalent to the correct classifica-
tion of 86 images out of a total of 90 photographs on the test 
dataset of first case study.

For the second case study, the logistic regression model 
recommended the Shear Range transformation for Data Aug-
mentation. In this sense, the hyperparameters selected for this 
application also achieved the best results in the test phase: 
93.3%.

In future work, it is expected to analyze other Data 
Augmentation transformations. In addition, it is also sug-
gested to test more levels for specific hyperparameters, for 
example, Zoom Range ranging from 10% to 50% . It is also 
worth highlighting the importance of investigating possible 
limitations of the logistic regression model, for example, 
the proposed approach did not accounted for the interac-
tions among different predictor variables. With interaction 

effects, each predictor (hyperparameter) influences others 
and could result others solutions of tuning. Another impor-
tant point will be the adoption of the HPtuningRegLog 
method in tuning of Data Augmentation settings in other 
applications with small dataset of building construction 
image classification.

Acknowledgements  The authors are grateful to Research Group in 
Construction Technology and Management (GETEC) - School of Engi-
neering (UFBA) - for providing the second image dataset, the Robotics 
& Perception Group (University of Zurich) for providing “The Zurich 
Urban Micro Aerial Vehicle Dataset”, UFBA and UFRB.

Declarations 

Conflict of interest  The Authors listed in this article declare that they 
have no conflict of interest.

Ethical approval  This article does not contain any studies with human 
participants or animals performed by any of the authors.

References

	 1.	 Ali R, Cha Y-J (2019) Subsurface damage detection of a steel 
bridge using deep learning and uncooled micro-bolometer. Constr 
Build Mater 226:376–387

	 2.	 Barberousse H, Lombardo RJ, Tell G, Couté A (2006) Factors 
involved in the colonisation of building facades by algae and 
cyanobacteria in france. Biofouling 22(02):69–77

	 3.	 Bianchi E, Abbott AL, Tokekar P, Hebdon M (2021) Coco-bridge: 
Structural detail data set for bridge inspections. J Comput Civ Eng 
35(3):04021003

	 4.	 Chollet F, Allaire JJ (2018) Deep learning with R. Manning 
Publications

	 5.	 Conceição J, Poça B, De Brito J, Flores-Colen I, Castelo A (2017) 
Inspection, diagnosis, and rehabilitation system for flat roofs. J 
Perform Constr Facil 31(6):04017100

	 6.	 Cubuk ED, Zoph B, Shlens J, Le QV (2020) Randaugment: Practi-
cal automated data augmentation with a reduced search space. In: 
Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition Workshops, pp 702–703

	 7.	 da Silva GR, Valões DC, Nascimento CF, SNA A., Candeia MA, 
Santiago H, Oliveira DV, Everton G, Lima JC, Souza JM (2 021) 
Elaboration of a damage map the facades of a public building in 
the city of triunfo/pe. Int J Adv Eng Res Sci 8:237–244

	 8.	 Dung CV et al (2019) Autonomous concrete crack detection using 
deep fully convolutional neural network. Autom Constr 99:52–58

	 9.	 Elgendy M (2020) Deep learning for vision systems. Manning 
Publications

	10.	 Fang W, Ding L, Luo H, Love PE (2018) Falls from heights: a 
computer vision-based approach for safety harness detection. 
Autom Constr 91:53–61

	11.	 Gao Y, Mosalam KM (2018) Deep transfer learning for image-
based structural damage recognition. Comput-Aid Civ Infrastruct 
Eng 33(9):748–768

	12.	 Garcez N, Lopes N, de Brito J, Silvestre J (2012) System of 
inspection, diagnosis and repair of external claddings of pitched 
roofs. Constr Build Mater 35:1034–1044



185International Journal of Machine Learning and Cybernetics (2023) 14:171–186	

1 3

	13.	 Giolo S. R (2017). Introduction to categorical data analysis with 
applications (in portuguese). Editora Blucher

	14.	 Guo J, Wang Q, Li Y, Liu P. (2020). Façade defects classifica-
tion from imbalanced dataset using meta learning-based convo-
lutional neural network. Computer-Aided Civil and Infrastructure 
Engineering

	15.	 He K, Zhang X, Ren S, Sun J (2016). Deep residual learning for 
image recognition. In 2016 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), pages 770–778

	16.	 Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Applied 
logistic regression, vol 398. John Wiley & Sons

	17.	 Howard A. G, Zhu M, Chen B, Kalenichenko D, Wang W, Wey-
and T, Andreetto M, Adam H. (2017). Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. arXiv 
preprint arXiv:​1704.​04861

	18.	 Huang G, Liu Z, Van Der Maaten L, Weinberger K. Q (2017). 
Densely connected convolutional networks. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 
2261–2269

	19.	 Hutter F, Hoos H, Leyton-Brown K. (2014). An efficient approach 
for assessing hyperparameter importance. In Proceedings of Inter-
national Conference on Machine Learning 2014 (ICML 2014), 
pages 754–762

	20.	 Hutter F, Kotthoff L, Vanschoren J, editors (2019). Automated 
Machine Learning: Methods, Systems, Challenges. Springer. In 
press, available at http://automl.org/book

	21.	 Kaamin M, Ahmad N, Razali S, Mokhtar M, Ngadiman N, Masri 
D, Hussin I, Asri L. (2020). Visual inspection of heritage mosques 
using unmanned aerial vehicle (uav) and condition survey proto-
col (csp) 1 matrix: A case study of tengkera mosque and kampung 
kling mosque, melaka. volume 1529

	22.	 Kolar Z, Chen H, Luo X (2018) Transfer learning and deep con-
volutional neural networks for safety guardrail detection in 2d 
images. Autom Constr 89:58–70

	23.	 Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 
521(7553):436–444

	24.	 Loukma M, Stefanidou M (2018) Causes of deterioration of 
ottoman mosques. WIT Transactions on The Built Environment 
177:173–180

	25.	 Maeda H, Sekimoto Y, Seto T, Kashiyama T, Omata H (2018) 
Road damage detection and classification using deep neural net-
works with smartphone images. Computer-Aided Civil and Infra-
structure Engineering 33(12):1127–1141

	26.	 Majdik AL, Till C, Scaramuzza D (2017) The zurich urban micro 
aerial vehicle dataset. The International Journal of Robotics 
Research 36(3):269–273

	27.	 Mantovani RG, Rossi AL, Alcobaça E, Vanschoren J, de Carvalho 
AC (2019) A meta-learning recommender system for hyperparam-
eter tuning: Predicting when tuning improves svm classifiers. Inf 
Sci 501:193–221

	28.	 Monshi MMA, Poon J, Chung V, Monshi FM (2021) Cov-
idxraynet: Optimizing data augmentation and cnn hyperparam-
eters for improved covid-19 detection from cxr. Computers in 
Biology and Medicine 133:104375

	29.	 Myers RH, Montgomery DC, Anderson-Cook CM (2016) 
Response surface methodology: process and product optimiza-
tion using designed experiments. John Wiley & Sons

	30.	 Neary P. (2018). Automatic hyperparameter tuning in deep con-
volutional neural networks using asynchronous reinforcement 
learning. In 2018 IEEE International Conference on Cognitive 
Computing (ICCC), pages 73–77

	31.	 Ottoni ALC, Nepomuceno EG, de Oliveira MS, de Oliveira DCR 
(2020) Tuning of reinforcement learning parameters applied to 
sop using the scott-knott method. Soft Comput 24:4441–4453

	32.	 Ottoni ALC, Novo MS (2021) A deep learning approach to veg-
etation images recognition in buildings: a hyperparameter tuning 
case study. IEEE Lat Am Trans 19(12):2062–2070

	33.	 Ottoni A. L. C, Novo M. S, Costa D. B. (2021). Hyperparameter 
tuning of convolutional neural networks for building construction 
image classication. The Visual Computer

	34.	 Pawara P, Okafor E, Schomaker L, Wiering M. (2017). Data aug-
mentation for plant classification. In International Conference on 
Advanced Concepts for Intelligent Vision Systems, pages 615–626. 
Springer

	35.	 R Core Team (2020) R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, 
Austria

	36.	 Ren Y, Huang J, Hong Z, Lu W, Yin J, Zou L, Shen X (2020) 
Image-based concrete crack detection in tunnels using deep fully 
convolutional networks. Construction and Building Materials 
234:117367

	37.	 Rocha E, Macedo J, Correia P, Monteiro E (2018) Adaptation of 
a damage map to historical buildings with pathological problems: 
Case study at the church of carmo in olinda, pernambuco. Revista 
ALCONPAT 8(1):51–63

	38.	 Sajedi SO, Liang X (2021) Uncertainty-assisted deep vision struc-
tural health monitoring. Computer-Aided Civil and Infrastructure 
Engineering 36(2):126–142

	39.	 Schratz P, Muenchow J, Iturritxa E, Richter J, Brenning A (2019) 
Hyperparameter tuning and performance assessment of statistical 
and machine-learning algorithms using spatial data. Ecol Model 
406:109–120

	40.	 Shankar K, Zhang Y, Liu Y, Wu L, Chen C-H (2020) Hyper-
parameter tuning deep learning for diabetic retinopathy fundus 
image classification. IEEE Access 8:118164–118173

	41.	 Shen J, Xiong X, Li Y, He W, Li P, Zheng X (2021) Detecting 
safety helmet wearing on construction sites with bounding-box 
regression and deep transfer learning. Computer-Aided Civil and 
Infrastructure Engineering 36(2):180–196

	42.	 Shorten C, Khoshgoftaar T. (2019). A survey on image data aug-
mentation for deep learning. Journal of Big Data, 6(1). cited By 
456

	43.	 Silveira, B., Melo, R., and Costa, D. B. (2021). Using uas for roofs 
structure inspections at post-occupational residential buildings. 
In Toledo Santos, E. and Scheer, S., editors, Proceedings of the 
18th International Conference on Computing in Civil and Build-
ing Engineering, pages 1055–1068, Cham. Springer International 
Publishing

	44.	 Song C, Xu W, Wang Z, Yu S, Zeng P, Ju Z. (2020). Analysis on 
the impact of data augmentation on target recognition for uav-based 
transmission line inspection. Complexity, 2020

	45.	 Staffa L. B, Sa L. S. V, Lima M. I. S. C, Costa D. B. (2020). Use of 
image processing techniques for inspection of building roof struc-
tures for technical assistance purposes (in portuguese). ENTAC - 
National Meeting of the Built Environment Technology

	46.	 Wang J.-J, Liu Y.-F, Nie X, Mo Y. (2022). Deep convolutional 
neural networks for semantic segmentation of cracks. Structural 
Control and Health Monitoring, 29(1). cited By 0

	47.	 Wang X, Zhao Y, Pourpanah F (2020) Recent advances in deep 
learning. Int J Mach Learn Cybern 11:747–750

	48.	 Wang Z, Yang J, Jiang H, Fan X (2020) Cnn training with twenty 
samples for crack detection via data augmentation. Sensors 
20(17):4849

	49.	 Xue Y, Li Y (2018) A fast detection method via region-based fully 
convolutional neural networks for shield tunnel lining defects. Com-
puter-Aided Civil and Infrastructure Engineering 33(8):638–654

	50.	 Yang Z, He B, Liu Y, Wang D, Zhu G (2021) Classification of rock 
fragments produced by tunnel boring machine using convolutional 
neural networks. Automation in Construction 125:103612

http://arxiv.org/abs/1704.04861


186	 International Journal of Machine Learning and Cybernetics (2023) 14:171–186

1 3

	51.	 Younis MC, Keedwell E (2019) Semantic segmentation on small 
datasets of satellite images using convolutional neural networks. 
Journal of Applied Remote Sensing 13(4):046510

	52.	 Zeng S, Zhang B, Zhang Y, Gou J (2020) Dual sparse learning via 
data augmentation for robust facial image classification. Int J Mach 
Learn Cybern 11(8):1717–1734

	53.	 Zhou S, Song W. (2020). Deep learning-based roadway crack clas-
sification using laser-scanned range images: A comparative study 
on hyperparameter selection. Automation in Construction, 114

	54.	 Zhou S, Song W (2021) Crack segmentation through deep convolu-
tional neural networks and heterogeneous image fusion. Automation 
in Construction 125:103605

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Tuning of data augmentation hyperparameters in deep learning to building construction image classification with small datasets
	Abstract
	1 Introduction
	2 Theoretical foundation
	2.1 Convolutional neural networks
	2.2 Logistic regression

	3 Methodology
	3.1 Database of the first case study
	3.2 Data augmentation
	3.3 Neural network architectures
	3.4 Hyperparameter tuning
	3.4.1 Design of experiments
	3.4.2 Logistic regression method
	3.4.3 HPtuningLogReg algorithm

	3.5 Hyperparameter tuning to second small dataset

	4 Results
	4.1 Results of first small dataset
	4.1.1 Stage 1: Data augmentation hyperparameters
	4.1.2 Stage 2: Data augmentation and CNN architectures
	4.1.3 Tests results

	4.2 Results of second small dataset
	4.3 Comparison with other studies

	5 Conclusion
	Acknowledgements 
	References




