Skip to main content
Log in

A deep clustering by multi-level feature fusion

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Deep clustering extracts non-linear features through neural networks to improve the clustering performance. At present, deep clustering algorithms mostly only use single-level features for clustering, ignoring shallow features information. To address this issue, we propose a joint learning framework that combines features extraction, features fusion and clustering. Different levels of features are extracted through dual convolutional autoencoders and fused. Moreover, the clustering loss function jointly updates the dual network parameters and cluster centers. The experimental results show that the proposed network architecture fusing different levels of features effectively improves clustering results without increasing model complexity. Compared with traditional and deep clustering algorithms, the Clustering Accuracy (ACC) and the Normalized Mutual Information (NMI) metrics are significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hancer E, Xue B, Zhang M (2020) A survey on feature selection approaches for clustering. Artif Intell Rev 53(6):4519–4545

    Article  Google Scholar 

  2. Lu H, Song Y, Wei H (2020) Multiple-kernel combination fuzzy clustering for community detection. Soft Comput 24(2):1–9

    Article  Google Scholar 

  3. Huang J, Gong S, Zhu X (2020) Deep semantic clustering by partition confidence maximization. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 8849–8858

  4. Radhika KR, Pushpa CN, Thriveni J, et al (2021) A Computer Vision-Based Approach for Subspace Clustering and Lagrange Multiplier Optimization in High-Dimensional Data. ICT Analysis and Applications. Springer, Singapore, pp 131–144

  5. Vouros A, Vasilaki E (2021) A semi-supervised sparse K-means algorithm. Pattern Recogn Lett 142:65–71

    Article  Google Scholar 

  6. Ramadhani F, Zarlis M, Suwilo S (2020) Improve BIRCH algorithm for big data clustering. IOP Confer Ser 725:012090

    Article  Google Scholar 

  7. Chen Y, Zhou L, Bouguila N et al (2021) BLOCK-DBSCAN: fast clustering for large scale data. Pattern Recognition 109:107624

    Article  Google Scholar 

  8. Saini S, Rani P (2017) A survey on STING and CLIQUE grid based clustering methods. Int J Adv Res Comput Sci 8(5):1510–1512

    Google Scholar 

  9. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1):37–52

    Article  Google Scholar 

  10. Sompairac N, Nazarov PV, Czerwinska U et al (2019) Independent component analysis for unraveling the complexity of cancer omics datasets. Int J Mol Sci 20(18):4414

    Article  Google Scholar 

  11. Sun L, Ma C, Chen Y et al (2019) Low rank component induced spatial-spectral kernel method for hyperspectral image classification. IEEE Trans Circuits Syst Video Technol 30(10):3829–3842

    Article  Google Scholar 

  12. Turchetti C, Falaschetti L (2019) A manifold learning approach to dimensionality reduction for modeling data. Inf Sci 491:16–29

    Article  MathSciNet  Google Scholar 

  13. Movassagh AA, Alzubi JA, Gheisari M (2021) Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J Ambient Intell Human Comput 12(3):1–9

  14. Öztürk Ş (2020) Stacked auto-encoder based tagging with deep features for content-based medical image retrieval. Expert Syst Appl 161:113693

    Article  Google Scholar 

  15. Alzubi OA, Alzubi JA, Alweshah M et al (2020) An optimal pruning algorithm of classifier ensembles: dynamic programming approach. Neural Comput Appl 32(20):16091–16107

    Article  Google Scholar 

  16. Ji P, Zhang T, Li H et al (2017) Deep subspace clustering networks. Adv Neural Inf Process Syst 30:24–33

    Google Scholar 

  17. Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. International Conference on Machine Learning, pp 478–487

  18. Guo X, Gao L, Liu X, et al (2017) Improved deep embedded clustering with local structure preservation. IJCAI, pp 1753–1759

  19. Guo X, Liu X, Zhu E, et al (2017) Deep clustering with convolutional autoencoders. International Conference on Neural Information Processing, pp 373–382

  20. Ye T, Zhang Z, Zhang X et al (2021) Fault detection of railway freight cars mechanical components based on multi-feature fusion convolutional neural network. Int J Mach Learn Cybern 12(6):1789–1801

    Article  Google Scholar 

  21. Zhan H, Lyu S, Lu Y (2022) Improving offline handwritten Chinese text recognition with glyph-semanteme fusion embedding. Int J Mach Learn Cybern 13(11):485–496

    Article  Google Scholar 

  22. Wang Y, Yao H, Zhao S (2016) Auto-encoder based dimensionality reduction. Neurocomputing 184:232–242

    Article  Google Scholar 

  23. Giusti A, Cireşan D C, Masci J, et al (2013) Fast image scanning with deep max-pooling convolutional neural networks. IEEE International Conference on Image Processing, pp 4034–4038

  24. LeCun Y, Bottou L, Bengio Y et al (1998) Gradient based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  25. Van der Maaten L (2009) A new benchmark dataset for handwritten character recognition. Tilburg University, Tilburg, pp 2–5

    Google Scholar 

  26. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747

  27. Kuhn HW (2005) The Hungarian method for the assignment problem. Nav Res Logist 52(1):7–21

    Article  Google Scholar 

  28. W. Xu, X. Liu, and Y. Gong (2003) Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp 267–273

  29. Opochinsky Y, Chazan S E, Gannot S, et al (2020) K-autoencoders deep clustering. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 4037–4041

  30. Lim KL, Jiang X, Yi C (2020) Deep clustering with variational autoencoder. IEEE Signal Process Lett 27:231–235

    Article  Google Scholar 

  31. Nie F, Xu D, Tsang IW, et al (2009) Spectral embedded clustering. IJCAI, pp 1181–1186

  32. Shaham U, Stanton K, Li H, et al (2018) SpectralNet: Spectral Clustering using Deep Neural Networks. CoRR, abs/1801.01587

  33. Chen X, Duan Y, Houthooft R, et al (2016) Infogan: interpretable representation learning by information maximizing generative adversarial nets. Adv Neural Inform Proces Syst, pp 2180–2188

  34. Zhou P, Hou Y, Feng J (2018) Deep adversarial subspace clustering. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1596–1604

Download references

Acknowledgements

This work is supported by the National Natural Science Foundations of China (No.61976216 and No.61672522).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shifei Ding or Xiao Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Ding, S. & Xu, X. A deep clustering by multi-level feature fusion. Int. J. Mach. Learn. & Cyber. 13, 2813–2823 (2022). https://doi.org/10.1007/s13042-022-01557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01557-z

Keywords

Navigation