Skip to main content
Log in

Device-free indoor localization based on sparse coding with nonconvex regularization and adaptive relaxation localization criteria

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

Considering practical device-free localization (DFL), the localization precision is usually proportional to the sensor density, with an ordinary arrangement. A better localization performance generally indicates a higher density of the sensor nodes that need to be deployed. To overcome this problem, we propose a new framework for dispatching sensor nodes. Regarding this framework, only few sensor nodes are applied to achieve an excellent localization performance. We consider the DFL problem as a sparse coding problem. To maintain the convexity of the cost function for more accurate solutions, we introduce the generalized minimax-concave (GMC) regularization to approximate the \(\ell _0\)-norm regularization. The global optimal solution can be identified by adopting the forward-backward splitting algorithm (FBS). Furthermore, the localization error is further decreased by the proposed adaptive relaxation localization (ARL) criteria for target localization. We tackled two experimental scenes in a real laboratory and compared the performance of the proposed algorithm with that of other algorithms using different regularizations. The experimental results show 100\(\%\) grid localization accuracy under the \(0.5 \times 0.5\) m grid scene. After adopting the ARL criteria, the average localization error decreased from 0.098 to 0.053 m in the \(0.25\times 0.25\)  m grid scene, with an increased rate of 45.9\(\%\). This is the best performance compared to state-of-the-art framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shit RC, Sharma S, Puthal D, James P, Ranjan R (2019) Ubiquitous localization (ubiloc): a survey and taxonomy on device free localization for smart world. IEEE Commun Surveys Tutor 21(99):3532–3564

    Article  Google Scholar 

  2. Moustafa Y, Matthew M, Ashok A (2007) Challenges: device-free passive localization for wireless environments. In: Proceedings of the 13th annual ACM international conference on mobile computing and networking, pp 222–229

  3. Liu B, Zhou W, Zhu T, Gao L, Luan TH, Zhou H (2016) Silence is golden: enhancing privacy of location-based services by content broadcasting and active caching in wireless vehicular networks. IEEE Trans Veh Technol 65(12):9942–9953

    Article  Google Scholar 

  4. Chiang T-H, Chuang Y-T, Ke C-L, Chen L-J, Tseng Y-C (2017) Calorie map: an activity intensity monitoring system based on wireless signals. In: 2017 IEEE wireless communications and networking conference (WCNC), IEEE, pp 1–6

  5. Li D, Lu Y, Xu J, Ma Q, Liu Z (2019) ipac: integrate pedestrian dead reckoning and computer vision for indoor localization and tracking. IEEE Access 7(99):183514–183523

    Article  Google Scholar 

  6. Jiang X (2021) Human tracking of track and field athletes based on fpga and computer vision. Microprocess Microsyst 83(4):104020

    Article  Google Scholar 

  7. Lu H, Zhang M, Xu X, Li Y, Shen HT (2021) Deep fuzzy hashing network for efficient image retrieval. IEEE Trans Fuzzy Syst 29(1):166–176

    Article  Google Scholar 

  8. Sun J, Li Y (2021) Multi-feature fusion network for road scene semantic segmentation. Comput Electr Eng 92:107155

    Article  Google Scholar 

  9. Lu H, Yang R, Deng Z, Zhang Y, Gao G, Lan R (2021) Chinese image captioning via fuzzy attention-based densenet-bilstm. ACM Trans Multimedia Comput Commun Appl (TOMM) 17(14):1–18

    Google Scholar 

  10. Pahlavan K, Krishnamurthy P, Geng Y (2015) Localization challenges for the emergence of the smart world. IEEE Access 3:3058–3067

    Article  Google Scholar 

  11. Yang M, Wu H, Liu Z, Ding S, Peng H (2019) Indoor positioning using public fm and dtmb signals based on compressive sensing. China Commun 16(5):171–180

    Article  Google Scholar 

  12. Jun WANG, Zhaotao QIN, Fei GAO, Shaoming WEI (2019) An approximate maximum likelihood algorithm for target localization in multistatic passive radar. Chin J Electron 28(1):195–201

    Article  Google Scholar 

  13. Ferrand S, Alouges F, Aussal M (2020) A real-time indoor localization method with low-cost microwave doppler radar sensors and particle filter. Computers helping people with special needs. In: 17th international conference, ICCHP (2020), Lecco, Italy, September 9–11, 2020, Proceedings. Part I

  14. Medina C, Segura JC, Torre A (2013) Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy. Sensors 13(3):3501–3526

    Article  Google Scholar 

  15. Alzubi JA, Bharathikannan B, Tanwar S, Manikandan R, Khanna A, Thaventhiran C (2019) Boosted neural network ensemble classification for lung cancer disease diagnosis. Appl Soft Comput 80:579–591

    Article  Google Scholar 

  16. Sadeghi M, Behnia F, Amiri R, Farina A (2021) Target localization geometry gain in distributed mimo radar. IEEE Trans Signal Process 69:1642–1652

    Article  MATH  Google Scholar 

  17. Jie W, Xiao Z, Gao Q, Hao Y, Wang H (2017) Device-free wireless localization and activity recognition: a deep learning approach. IEEE Trans Veh Technol 66(7):6258–6267

    Article  Google Scholar 

  18. Haute TV, Verbeke B, Poorter ED, Moerman I (2017) Optimizing time-of-arrival localization solutions for challenging industrial environments. IEEE Trans Ind Inf 13(3):1430–1439

    Article  Google Scholar 

  19. Alzubi OA, Alzubi JA, Alweshah M, Qiqieh I, Ramachandran M (2020) An optimal pruning algorithm of classifier ensembles: dynamic programming approach. Neural Comput Appl 32(5):1–17

    Google Scholar 

  20. May M, Moustafa Y (2009) Smart devices for smart environments: device-free passive detection in real environments. In: 2009 IEEE international conference on pervasive computing and communications. IEEE, pp 1–6

  21. Sabek I, Youssef M, Vasilakos AV (2012) Ace: an accurate and efficient multi-entity device-free wlan localization system. IEEE Trans Mobile Comput 14(2):261–273

    Article  Google Scholar 

  22. Wilson J, Patwari N (2010) Radio tomographic imaging with wireless networks. IEEE Trans Mob Comput 9(5):621–632

    Article  Google Scholar 

  23. Wang J, Gao Q, Wang H, Yu Y, Jin M (2013) Time-of-flight-based radio tomography for device free localization. IEEE Trans Wireless Commun 12(5):2355–2365

    Article  Google Scholar 

  24. Wang J, Gao Q, Wang H, Cheng P, Xin K (2015) Device-free localization with multidimensional wireless link information. IEEE Trans Veh Technol 64(1):356–366

    Article  Google Scholar 

  25. Wang J, Fang D, Chen X, Yang Z, Xing T, Cai L (2013) Lcs: compressive sensing based device-free localization for multiple targets in sensor networks. In: 2013 proceedings IEEE INFOCOM, pp 145–149. IEEE

  26. Ju W, Fang D, Zhe Y, Jiang H, Chen X, Xing T, Lin C (2017) E-hipa: an energy-efficient framework for high-precision multi-target-adaptive device-free localization. IEEE Trans Mob Comput 16(3):716–729

    Article  Google Scholar 

  27. Xiao J, Wu K, Yi Y, Wang L, Ni LM (2013) Pilot: passive device-free indoor localization using channel state information. In: 2013 IEEE 33rd international conference on distributed computing systems, pp 236–245. IEEE

  28. Konings D, Alam F, Noble F, Lai MK (2019) Springloc: a device-free localization technique for indoor positioning and tracking using adaptive rssi spring relaxation. IEEE Access 7(99):56960–56973

    Article  Google Scholar 

  29. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MATH  Google Scholar 

  30. Baraniuk RG (2007) Compressive sensing [lecture notes]. IEEE Signal Process Mag 24(4):118–121

    Article  Google Scholar 

  31. Zhao L, Huang H, Li X, Ding S, Zhao H, Han Z (2019) An accurate and robust approach of device-free localization with convolutional autoencoder. IEEE Internet Things J 6(3):5825–5840

    Article  Google Scholar 

  32. Huang H, Zhao H, Li X, Ding S, Zhao L, Li Z (2018) An accurate and efficient device-free localization approach based on sparse coding in subspace. IEEE Access 6:61782–61799

    Article  Google Scholar 

  33. Han Z, Su C, Ding S, Huang H, Zhao L (2019) Device-free localization via sparse coding with log-regularizer. In: 2019 IEEE 10th international conference on awareness science and technology (iCAST), pp 1–6. IEEE

  34. Xiang L, Ding S, Li Z, Tan B (2017) Device-free localization via dictionary learning with difference of convex programming. IEEE Sens J 17(17):5599–5608

    Google Scholar 

  35. Guo Y, Huang K, Jiang N, Guo X, Li Y, Wang G (2015) An exponential-rayleigh model for rss-based device-free localization and tracking. IEEE Trans Mob Comput 14(3):484–494

    Article  Google Scholar 

  36. Selesnick I (2017) Sparse regularization via convex analysis. IEEE Trans Signal Process 65(17):4481–4494

    Article  MATH  Google Scholar 

  37. Tan B, Li Y, Zhao H, Li X, Ding S (2020) A novel dictionary learning method for sparse representation with nonconvex regularizations. Neurocomputing 417:128–141

    Article  Google Scholar 

  38. Avellaneda M, Davis G, Mallat S (1997) Adaptive greedy approximations. Constr Approx 13(1):57–98

    Article  MATH  Google Scholar 

  39. Zou J, Shen M, Zhang Y, Li H, Liu G, Ding S (2019) Total variation denoising with non-convex regularizers. IEEE Access 7:4422–4431

    Article  Google Scholar 

  40. Wright J, Yang YA, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 44(12):2368–2378

    Google Scholar 

  41. Gheisari M, Panwar D, Tomar P, Harsh H, Alzubi JA (2019) A optimization model for software quality prediction with-case study analysis using matlab. IEEE Access 7(99):1

    Google Scholar 

  42. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithms for linear inverse problems. SIAM J Imag Sci 2(1):1936–4954

    Article  MATH  Google Scholar 

  43. Liu T, Luo X, Liang Z (2018) Enhanced sparse representation-based device-free localization with radio tomography networks. J Sensor Actuat Netw 7(1):7

    Article  Google Scholar 

  44. Li Z, Ding S, Hayashi T, Li Y (2017) Incoherent dictionary learning with log-regularizer based on proximal operators. Digital Signal Process 63:86–99

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Guangxi Postdoctoral Special Foundation and the National Natural Science Foundation of China under Grant 61903090 and 62076077, the Dean Project of Guangxi Wireless Broadband Communication and Signal Processing Key Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benying Tan or Shuxue Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Tan, B., Ding, S. et al. Device-free indoor localization based on sparse coding with nonconvex regularization and adaptive relaxation localization criteria. Int. J. Mach. Learn. & Cyber. 14, 429–443 (2023). https://doi.org/10.1007/s13042-022-01559-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01559-x

Keywords

Navigation