Skip to main content
Log in

Uncertainty measurement for incomplete set-valued data with application to attribute reduction

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

A set-valued information system (SVIS) is the generalization of a single-valued information system. A SVIS with missing information values is called an incomplete set-valued information system (ISVIS). This paper focuses on studying uncertainty measurement for an ISVIS with application to attribute reduction. First, the similarity degree between information values on each attribute is presented in an ISVIS. Then, the tolerance relation induced by each subsystem is given and rough approximations based on this relation is considered. Next, some tools to measure the uncertainty of an ISVIS are put forwarded. Moreover, the validity of the proposed measures is analyzed from the statistical point of view. Finally, information granulation and information entropy are applied to attribute reduction, the incomplete rate is adopted, and the effectiveness under different incomplete rates is analyzed and verified by k-means clustering algorithm and Mean Shift clustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69

Similar content being viewed by others

References

  1. Calinski TT, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27

    MathSciNet  MATH  Google Scholar 

  2. Chen LL, Chen DG, Wang H (2019) Fuzzy kernel alignment with application to attribute reduction of heterogeneous data. IEEE Trans Fuzzy Syst 27:1469–1478

    Article  Google Scholar 

  3. Chen LJ, Liao SM, Xie NX, Li ZW, Zhang GQ, Wen CF (2020) Measures of uncertainty for an incomplete set-valued information system with the optimal selection of subsystems: Gaussian kernel method. IEEE Access 8:212022–212035

    Article  Google Scholar 

  4. Chen ZC, Qin KY (2010) Attribute reduction of set-valued information systems based on a tolerance relation. Comp Sci 23(1):18–22

    MathSciNet  Google Scholar 

  5. Chen XW, Xu WH (2021) Double-quantitative multigranulation rough fuzzy set based on logical operations in multi-source decision systems. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-021-01433-2

    Article  Google Scholar 

  6. Cornelis C, Jensen R, Martin GH, Slezak D (2010) Attribute selection with fuzzy decision reducts. Inf Sci 180:209–224

    Article  MathSciNet  MATH  Google Scholar 

  7. Couso L, Dubois D (2014) Statistical reasoning with set-valued information: Onticvs. Epistemic views. Int J Approx Reason 55:1502–1518

    Article  MATH  Google Scholar 

  8. Dai JH, Tian HW (2013) Entropy measures and granularity measures for set-valued information systems. Inf Sci 240:72–82

    Article  MathSciNet  MATH  Google Scholar 

  9. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Article  Google Scholar 

  10. Delgado A, Romero I (2016) Environmental conflict analysis using an integrated grey clustering and entropy-weight method: a case study of a mining project in Peru. Environ Modell Softw 77:108–121

    Article  Google Scholar 

  11. Duntsch I, Gediga G (1998) Uncertainty measures of rough set prediction. Artif Intell 106:109–137

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92

    Article  MathSciNet  MATH  Google Scholar 

  13. Giang NL, Son LH, Ngan TT, Tuan TM, Phuong HT, Abdel-Basset M, de Macdo ARL, de Albuquerque VHC (2020) Novel incremental algorithms for attribute reduction from dynamic decision tables using hybrid filter-wrapper with fuzzy partition distance. IEEE Trans Fuzzy Syst 28:858–873

    Article  Google Scholar 

  14. Hempelmann CF, Sakoglu U, Gurupur VP, Jampana S (2016) An entropy-based evaluation method for knowledge bases of medical information systems. Expert Syst Appl 46:262–273

    Article  Google Scholar 

  15. Huang YY, Li TR, Lou C, Fujita H, Horng SJ (2017) Dynamic variable precision rough set approach for probabilistic set-valued information systems. Knowl-Based Syst 122:1–17

    Article  Google Scholar 

  16. Leung Y, Fischer MM, Wu WZ, Mi JS (2008) A rough set approach for the discovery of classification rules in interval-valued information systems. Int J Approx Reason 47:233–246

    Article  MathSciNet  MATH  Google Scholar 

  17. Li JH, Kumar CA, Mei CL, Wang XH (2017) Comparison of reduction in formal decision contexts. Int J Approx Reason 80:100–122

    Article  MathSciNet  MATH  Google Scholar 

  18. Li ZW, Wang ZH, Song Y, Wen CF (2021) Information structures in a fuzzy set-valued information system based on granular computing. Int J Approx Reason 134:72–94

    Article  MathSciNet  MATH  Google Scholar 

  19. Li BZ, Wei ZH, Miao DQ, Zhang N, Shen W, Gong C, Zhang HY, Sun LJ (2020) Improved general attribute reduction algorithms. Inf Sci 536:298–316

    Article  MathSciNet  MATH  Google Scholar 

  20. Li WT, Xu WH, Zhang XY, Zhang J (2021) Updating approximations with dynamic objects based on local multigranulation rough sets in ordered information systems. Artif Intell Rev. https://doi.org/10.1007/s10462-021-10053-9

    Article  Google Scholar 

  21. Liu Y, Zhong C (2016) Attribute reduction of set-valued decision information system based on dominance relation. J Interdiscip Math 19(3):469–479

    Article  Google Scholar 

  22. Navarrete J, Viejo D, Cazorla M (2016) Color smoothing for RGB-D data using entropy information. Appl Soft Comput 46:361–380

    Article  Google Scholar 

  23. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356

    Article  MATH  Google Scholar 

  24. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  25. Qian YH, Liang JY, Dang CY (2008) Set ordered information systems. Comput Math Appl 56:1994–2009

    Article  MathSciNet  MATH  Google Scholar 

  26. Qian YH, Liang JY, Pedrycz W, Dang CY (2010) An accelerator for attribute reduction in rough set theory. Artif Intell 174:597–618

    Article  MathSciNet  MATH  Google Scholar 

  27. Rouseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  28. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  MathSciNet  MATH  Google Scholar 

  29. Singh S, Shreevastava S, Som T, Somani G (2020) A fuzzy similarity-based rough set approach for attribute selection in set-valued information systems. Soft Comput 24:4675–4691

    Article  MATH  Google Scholar 

  30. Song XX, Zhang WX (2009) Knowledge reduction in set-valued decision information system. Rough Sets Curr Trends Comput Proc 7260(1):348–357

    MATH  Google Scholar 

  31. Tang L, Wang Y, Mo ZW (2007) Knowledge reduction in set-valued incomplete information system. J Sichuan Normal Univ 30(3):288–290

    MathSciNet  MATH  Google Scholar 

  32. Wang CZ, Huang Y, Ding WP, Cao ZH (2021) Attribute reduction with fuzzy rough self-information measures. Inf Sci 549:68–86

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang CZ, Huang Y, Shao MW, Chen DG (2019) Uncertainty measures for general fuzzy relations. Fuzzy Sets Syst 360:82–96

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang CZ, Huang Y, Shao MW, Fan XD (2019) Fuzzy rough set-based attribute reduction using distance measures. Knowl-Based Syst 164:205–212

    Article  Google Scholar 

  35. Wang H, Yue HB (2016) Entropy measures and granularity measures for interval and set-valued information systems. Soft Comput 20:3489–3495

    Article  MATH  Google Scholar 

  36. Wierman MJ (1999) Measuring uncertainty in rough set theory. Int J Gen Syst 28:283–297

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu ZJ, Wang H, Chen N, Luo JW (2021) Semi-monolayer covering rough set on set-valued information systems and its efficient computation. Int J Approx Reason 130:83–106

    Article  MathSciNet  MATH  Google Scholar 

  38. Xie NX, Liu M, Li ZW, Zhang GQ (2019) New measures of uncertainty for an interval-valued information system. Inf Sci 470:156–174

    Article  MathSciNet  MATH  Google Scholar 

  39. Xie XL, Li ZW, Zhang PF, Zhang GQ (2019) Information structures and uncertainty measures in an incomplete probabilistic set-valued information system. IEEE Access 7:27501–27514

    Article  Google Scholar 

  40. Xie SD, Wang YX (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Pers Commun 78(1):231–246

    Article  Google Scholar 

  41. Xu WH, Guo YT (2016) Generalized multigranulation double-quantitative decision-theoretic rough set. Knowl-Based Syst 105(1):190–205

    Article  Google Scholar 

  42. Xu WH, Li WT (2016) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybern 46(2):366–379

    Article  MathSciNet  Google Scholar 

  43. Xu WH, Yu JH (2017) A novel approach to information fusion in multi-source datasets: a granular computing viewpoint. Inf Sci 378:410–423

    Article  MATH  Google Scholar 

  44. Xu WH, Yuan KH, Li WT (2022) Dynamic updating approximations of local generalized multigranulation neighborhood rough set. Appl Intell. https://doi.org/10.1007/s10489-021-02861-x

    Article  Google Scholar 

  45. Yao YY (2003) Probabilistic approaches to rough sets. Expert Syst 20:287–297

    Article  Google Scholar 

  46. Yao YY, Li XN (1996) Comparison of rough-set and set-set models for uncertain reasoning. Fund Inf 27:289–298

    MATH  Google Scholar 

  47. Yuan KH, Xu WH, Li WT, Ding WP (2022) An incremental learning mechanism for object classification based on progressive fuzzy three-way concept. Inf Sci 584(1):127–147

    Article  Google Scholar 

  48. Zar JH (1972) Significance testing of the Spearman rank correlation coefficient. J Am Stat Assoc 67(339):578–580

    Article  MATH  Google Scholar 

  49. Zhang GQ, Li ZW, Wu WZ, Liu XF, Xie NX (2018) Information structures and uncertainty measures in a fully fuzzy information system. Int J Approx Reason 101:119–149

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions, which have helped immensely in improving the quality of the paper. This work is supported by National Natural Science Foundation of China (11971420), Natural Science Foundation of Guangxi (AD19245102, 2020GXNSFAA159155, 2018GXNSFDA294003), Key Laborabory of Software Engineering in Guangxi University for Nationalities (2021-18XJSY-03) and Special Scientific Research Project of Young Innovative Talents in Guangxi (2019AC20052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaowen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Luo, D., Xie, N. et al. Uncertainty measurement for incomplete set-valued data with application to attribute reduction. Int. J. Mach. Learn. & Cyber. 13, 3031–3069 (2022). https://doi.org/10.1007/s13042-022-01580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01580-0

Keywords

Navigation