Skip to main content
Log in

An improved adaptive ORB-SLAM method for monocular vision robot under dynamic environments

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The vision-based simultaneous localization and mapping (SLAM) method is a hot spot in the robotic research field, and Oriented FAST and Rotated BRIEF (ORB) SLAM algorithm is one of the most effective methods. However, there are some problems of the general ORB-SLAM algorithm in the dynamic environment, which need to be solved further, including the control of the number of the feature points and the treatment of the dynamic objects. In this paper, an improved ORB-SLAM method is proposed for the monocular vision robot under dynamic environments. In the proposed method, a concept of reliability is proposed to mark the feature points, which can control the number of the feature points dynamically into the preset range. Then an improved frame difference method based on the partial detection strategy is used to detect the dynamic objects in the environment. In addition, a novel treatment mechanism for the tracking failure issue is introduced into the ORB-SLAM algorithm, which can improve the accuracy of the localization and mapping. Finally, the experiments on the public datasets and private datasets are conducted and the results show that the proposed method is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability statement

Publicly available datasets were analyzed in this study. This data can be found here: https://vision.in.tum.de/data/datasets/rgbd-dataset/download.

References

  1. Bescos B, Facil JM, Civera J, Neira J (2018) DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robot Autom Lett 3(4):4076–4083

    Article  Google Scholar 

  2. Cai L, Ye Y, Gao X, Li Z, Zhang C (2021) An improved visual SLAM based on affine transformation for ORB feature extraction. Optik 227:165421

  3. Chen J, Xi Z, Wei C, Lu J, Niu Y, Li Z (2021) Multiple object tracking using edge multi-channel gradient model with ORB feature. IEEE Access 9:2294–2309

    Article  Google Scholar 

  4. Cheng J, Sun Y, Meng MQH (2019) Improving monocular visual SLAM in dynamic environments: an optical-flow-based approach. Adv Robot 33(12):576–589

    Article  Google Scholar 

  5. Cheng J, Zhang H, Meng MQH (2020) Improving visual localization accuracy in dynamic environments based on dynamic region removal. IEEE Trans Autom Sci Eng 17(3):1585–1596

    Google Scholar 

  6. Chhabra P, Garg NK, Kumar M (2020) Content-based image retrieval system using ORB and SIFT features. Neural Comput Appl 32(7):2725–2733

    Article  Google Scholar 

  7. Davison AJ, Reid ID, Molton ND, Stasse O (2007) MonoSLAM: real-time single camera SLAM. IEEE Trans Pattern Anal Mach Intell 29(6):1052–1067

    Article  Google Scholar 

  8. Diaz CA, Perez DS, Miatello H, Bromberg F (2018) Grapevine buds detection and localization in 3D space based on structure from motion and 2D image classification. Comput Ind 99:303–312

    Article  Google Scholar 

  9. Domae Y (2019) Recent trends in the research of industrial robots and future outlook. J Robot Mechatron 31(1):57–62

    Article  Google Scholar 

  10. Engel J, Schöps T, Cremers D (2014) LSD-SLAM: Large-scale direct monocular SLAM. 13th European Conference on Computer Vision. ECCV 2014. Zurich, Switzerland, pp 834–849

  11. Fan Y, Han H, Tang Y, Zhi T (2019) Dynamic objects elimination in SLAM based on image fusion. Pattern Recogn Lett 127:191–201

    Article  Google Scholar 

  12. Forster C, Zhang Z, Gassner M, Werlberger M, Scaramuzza D (2016) SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Trans Robot 33(2):249–265

    Article  Google Scholar 

  13. Fu Q, Yu H, Wang X, Yang Z, He Y, Zhang H, Mian A (2022) Fast ORB-SLAM without keypoint descriptors. IEEE Trans Image Process 31:1433–1446

    Article  Google Scholar 

  14. Gao X, Zhang T (2017) Unsupervised learning to detect loops using deep neural networks for visual SLAM system. Autonomous Robots 41(1):1–18

  15. Geng M, Shang S, Ding B, Wang H, Zhang P (2020) Unsupervised learning-based depth estimation-aided visual SLAM approach. Circ Syst Signal Process 39(2):543–570

    Article  Google Scholar 

  16. Hu F, Cheng J, Bao Y, He Y (2020) Accuracy enhancement for the front-end tracking algorithm of RGB-D SLAM. Intel Serv Robot 13(2):207–218

    Article  Google Scholar 

  17. Jiang R, Zhou H, Wang H, Ge SS (2020) Road-constrained geometric pose estimation for ground vehicles. IEEE Trans Autom Sci Eng 17(2):748–760

    Article  Google Scholar 

  18. Kiss-Illes D, Barrado C, Salami E (2019) GPS-SLAM: an augmentation of the ORB-SLAM algorithm. Sensors (Switzerland) 19(22):4973

  19. Kretzschmar H, Stachniss C (2012) Information-theoretic compression of pose graphs for laser-based SLAM. Int J Robot Res 31(11):1219–1230

    Article  Google Scholar 

  20. Kumar M, Gupta S, Mohan N (2020) A computational approach for printed document forensics using SURF and ORB features. Soft Comput 24(17):13197–13208

    Article  Google Scholar 

  21. Li X, Xu Y, Lv Q, Dou Y (2016) Affine-transformation parameters regression for face alignment. IEEE Signal Process Lett 23(1):55–59

    Article  Google Scholar 

  22. Liang Z, Wang C (2021) A semi-direct monocular visual SLAM algorithm in complex environments. J Intell Robot Syst 101(1):25

  23. Munguia R, Grau A (2009) Closing loops with a virtual sensor based on monocular SLAM. IEEE Trans Instrum Meas 58(8):2377–2384

    Article  Google Scholar 

  24. Mur-Artal R, Montiel J, Tardos JD (2015) ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot 31(5):1147–1163

    Article  Google Scholar 

  25. Nguyen TH, Nguyen TM, Xie L (2020) Tightly-coupled ultra-wideband-aided monocular visual SLAM with degenerate anchor configurations. Auton Robot 44(8):1519–1534

    Article  Google Scholar 

  26. Ni J, Gong T, Gu Y, Zhu J, Fan X (2020) An improved deep residual network-based semantic simultaneous localization and mapping method for monocular vision robot. Comput Intell Neurosci 2020:7490840

  27. Ni J, Wang C, Fan X, Yang SX (2014) A bioinspired neural model based extended Kalman filter for robot SLAM. Math Prob Eng 2014:905826

  28. Ni J, Wu L, Fan X, Yang SX (2016) Bioinspired intelligent algorithm and its applications for mobile robot control: a survey. Comput Intell Neurosci 2016:3810903

  29. Ren X, Wang Y, Wang H, Li X, Liu X (2020) An improved orb-slam2 algorithm based on image information entropy. Hulun Buir, Inner Mongolia

    Book  Google Scholar 

  30. Saputra MRU, Markham A, Trigoni N (2018) Visual SLAM and structure from motion in dynamic environments: a survey. ACM Comput Surv 51(2):37

  31. Sturm J, Engelhard N, Endres F, Burgard W, Cremers D (2012) A benchmark for the evaluation of RGB-D SLAM systems. Vilamoura, Algarve, pp 573–580

  32. Sualeh M, Kim GW (2019) Simultaneous localization and mapping in the epoch of semantics: a survey. Int J Control Autom Syst 17(3):729–742

    Article  Google Scholar 

  33. Sujiwo A, Ando T, Takeuchi E, Ninomiya Y, Edahiro M (2016) Monocular vision-based localization using ORB-SLAM with LIDAR-Aided mapping in real-world robot challenge. J Robot Mechatron 28(4):479–490

    Article  Google Scholar 

  34. Trujillo JC, Munguia R, Urzua S, Guerra E, Grau A (2020) Monocular visual SLAM based on a cooperative uavtarget system. Sensors (Switzerland) 20(12):1–32

    Article  Google Scholar 

  35. Urzua S, Munguia R, Grau A (2017) Vision-based SLAM system for MAVs in GPS-denied environments. Int J Micro Air Veh 9(4):283–296

    Article  Google Scholar 

  36. Wang W, Siau K (2019) Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: a review and research agenda. J Database Manage 30(1):61–79

    Article  Google Scholar 

  37. Wang X, Zhang C, Liu F, Dong Y, Xu X (2017) Exponentially weighted particle filter for simultaneous localization and mapping based on magnetic field measurements. IEEE Trans Instrum Meas 66(7):1658–1667

    Article  Google Scholar 

  38. Xiao L, Wang J, Qiu X, Rong Z, Zou X (2019) Dynamic-SLAM: Semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robot Auton Syst 117:1–16

    Article  Google Scholar 

  39. Xie W, Liu PX, Zheng M (2021) Moving object segmentation and detection for robust RGBD-SLAM in dynamic environments. IEEE Trans Instrum Measure 70:5001008

  40. Xu L, Feng C, Kamat VR, Menassa CC (2020) A scene-adaptive descriptor for visual SLAM-based locating applications in built environments. Autom Construct 112:103067

  41. Yang S, Scherer S (2019) Monocular object and plane SLAM in structured environments. IEEE Robot Autom Lett 4(4):3145–3152

    Article  Google Scholar 

  42. Yang S, Fan G, Bai L, Li R, Li D (2020) MGC-VSLAM: a meshing-based and geometric constraint VSLAM for dynamic indoor environments. IEEE Access 8:81007–81021

    Article  Google Scholar 

  43. Yang S, Fan G, Bai L, Zhao C, Li D (2020) SGC-VSLAM: a semantic and geometric constraints VSLAM for dynamic indoor environments. Sensors (Switzerland) 20(8):2432

  44. Zhang B, Zhu D (2021) A stereo SLAM system with dense mapping. IEEE Access 9:151888–151896

    Article  Google Scholar 

  45. Zhuang Y, Jiang N, Hu H, Yan F (2013) 3-d-laser-based scene measurement and place recognition for mobile robots in dynamic indoor environments. IEEE Trans Instrum Meas 62(2):438–450

    Article  Google Scholar 

  46. Zou D, Tan P (2013) CoSLAM: collaborative visual SLAM in dynamic environments. IEEE Trans Pattern Anal Mach Intell 35(2):354–366

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61873086, 61903123) and Natural Science Foundation of Jiangsu Province (BK20190165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, J., Wang, X., Gong, T. et al. An improved adaptive ORB-SLAM method for monocular vision robot under dynamic environments. Int. J. Mach. Learn. & Cyber. 13, 3821–3836 (2022). https://doi.org/10.1007/s13042-022-01627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01627-2

Keywords

Navigation