Skip to main content
Log in

Recent development of hashing-based image retrieval in non-stationary environments

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

With the continuous development of mobile devices, the number of images on the Internet increases explosively. Hashing methods solve retrieval problems with large datasets by converting images into binary hash codes. However,the image dataset on the Internet is updating and its data distribution may change as time goes by. In this situation, the retrieval effectiveness of ordinary hashing methods designed for stationary environments will decline. Thus, hashing methods for non-stationary environments are developed to learn from newly arrived data and adapt to new data environments for better retrieval accuracy in non-stationary environments. In this paper, goals of ideal hashing methods for non-stationary environments are proposed. State-of-the-art hashing methods for non-stationary environments are introduced and analyzed for their advantages and disadvantages according to goals. Experiments are presented to show characteristics of these methods. Suggestions for future development of non-stationary hashing are also given at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chi L, Zhu X (2017) Hashing techniques: a survey and taxonomy. ACM Comput Surv 50:1–36. https://doi.org/10.1145/3047307

    Article  Google Scholar 

  2. Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In: Proceedings of the 25th International Conference on Very Large Data Bases. VLDB ’99, pp. 518–529. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

  3. Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels 22:1509–1517

  4. Datar M, Indyk P, Immorlica N, Mirrokni V (2004) Locality-sensitive hashing scheme based on p-stable distributions. https://doi.org/10.1145/997817.997857

  5. Chum O, Philbin J, Zisserman A (2008). Near duplicate image detection: min-hash and tf-idf weighting. https://doi.org/10.5244/C.22.50

  6. Gong Y, Lazebnik S, Gordo A, Perronnin F (2013) Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans Pattern Anal Mach Intell 35(12):2916–2929. https://doi.org/10.1109/TPAMI.2012.193

    Article  Google Scholar 

  7. Heo J-P, Lee Y, He J, Chang S-F, Yoon S-E (2012) Spherical hashing. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp 2957–2964 https://doi.org/10.1109/CVPR.2012.6248024

  8. Weiss Y, Torralba A, Fergus R (2008) Spectral hashing. In: Proceedings of the 21st International Conference on Neural Information Processing Systems. NIPS’08, pp 1753–1760. Curran Associates Inc., Red Hook, NY, USA

  9. Liu L, Yu M, Shao L (2016) Unsupervised local feature hashing for image similarity search. IEEE Trans Cybern 46(11):2548–2558. https://doi.org/10.1109/TCYB.2015.2480966

    Article  Google Scholar 

  10. Strecha C, Bronstein A, Bronstein M, Fua P (2012) Ldahash: improved matching with smaller descriptors. IEEE Trans Pattern Anal Mach Intell 34(1):66–78. https://doi.org/10.1109/TPAMI.2011.103

    Article  Google Scholar 

  11. Shen F, Shen C, Liu W, Shen HT (2015) Supervised discrete hashing. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 37–45 https://doi.org/10.1109/CVPR.2015.7298598

  12. Kulis B, Jain P, Grauman K (2009) Fast similarity search for learned metrics. IEEE Trans Pattern Anal Mach Intell 31(12):2143–2157. https://doi.org/10.1109/TPAMI.2009.151

    Article  Google Scholar 

  13. Wang J, Kumar S, Chang S-F (2012) Semi-supervised hashing for large-scale search. IEEE Trans Pattern Anal Mach Intell 34(12):2393–2406. https://doi.org/10.1109/TPAMI.2012.48

    Article  Google Scholar 

  14. Wu C, Zhu J, Cai D, Chen C, Bu J (2013) Semi-supervised nonlinear hashing using bootstrap sequential projection learning. IEEE Trans Knowl Data Eng 25(6):1380–1393. https://doi.org/10.1109/TKDE.2012.76

    Article  Google Scholar 

  15. Huang L-K, Yang Q, Zheng W-S (2013) Online hashing. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. IJCAI ’13, pp. 1422–1428. AAAI Press, ???

  16. Ng WWY, Tian X, Lv Y, Yeung DS, Pedrycz W (2017) Incremental hashing for semantic image retrieval in nonstationary environments. IEEE Trans Cybern 47(11):3814–3826. https://doi.org/10.1109/TCYB.2016.2582530

    Article  Google Scholar 

  17. Liu A, Lu J, Zhang G (2021) Concept drift detection via equal intensity k-means space partitioning. IEEE Trans Cybern 51(6):3198–3211. https://doi.org/10.1109/TCYB.2020.2983962

    Article  Google Scholar 

  18. Elwell R, Polikar R (2011) Incremental learning of concept drift in nonstationary environments. IEEE Trans Neural Netw 22(10):1517–1531. https://doi.org/10.1109/TNN.2011.2160459

    Article  Google Scholar 

  19. Wang J, Zhang T, song j, Sebe N, Shen HT, (2018) A survey on learning to hash. IEEE Trans Pattern Anal Mach Intell 40(4):769–790. https://doi.org/10.1109/TPAMI.2017.2699960

  20. Xu H, Wang J, Li Z, Zeng G, Li S, Yu N (2011) Complementary hashing for approximate nearest neighbor search. In: 2011 International Conference on Computer Vision, pp. 1631–1638 https://doi.org/10.1109/ICCV.2011.6126424

  21. Song J, Yang Y, Li X, Huang Z, Yang Y (2014) Robust hashing with local models for approximate similarity search. IEEE Trans Cybern 44(7):1225–1236. https://doi.org/10.1109/TCYB.2013.2289351

    Article  Google Scholar 

  22. Jin Z, Li C, Lin Y, Cai D (2014) Density sensitive hashing. IEEE Trans Cybern 44(8):1362–1371. https://doi.org/10.1109/TCYB.2013.2283497

    Article  Google Scholar 

  23. Shen X, Shen F, Sun Q-S, Yang Y, Yuan Y-H, Shen HT (2017) Semi-paired discrete hashing: learning latent hash codes for semi-paired cross-view retrieval. IEEE Trans Cybern 47(12):4275–4288. https://doi.org/10.1109/TCYB.2016.2606441

    Article  Google Scholar 

  24. Ma C, Tsang IW, Shen F, Liu C (2019) Error correcting input and output hashing. IEEE Trans Cybern 49(3):781–791. https://doi.org/10.1109/TCYB.2017.2785621

    Article  Google Scholar 

  25. Lin Z, Ding G, Han J, Wang J (2017) Cross-view retrieval via probability-based semantics-preserving hashing. IEEE Trans Cybern 47(12):4342–4355. https://doi.org/10.1109/TCYB.2016.2608906

    Article  Google Scholar 

  26. Mandal D, Annadani Y, Biswas S (2019) GrowBit: Incremental Hashing for Cross-Modal Retrieval, pp. 305–321. https://doi.org/10.1007/978-3-030-20870-7_19

  27. Zhou X, Shen F, Liu L, Liu W, Nie L, Yang Y, Shen HT (2020) Graph convolutional network hashing. IEEE Trans Cybern 50(4):1460–1472. https://doi.org/10.1109/TCYB.2018.2883970

    Article  Google Scholar 

  28. Zhang J, Peng Y (2019) Ssdh: Semi-supervised deep hashing for large scale image retrieval. IEEE Trans Circuits Syst Video Technol 29(1):212–225. https://doi.org/10.1109/TCSVT.2017.2771332

    Article  Google Scholar 

  29. Wang X, Liu X, Hu Z, Wang N, Fan W, Du J-X (2019) Semi-supervised semantic-preserving hashing for efficient cross-modal retrieval. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 1006–1011. https://doi.org/10.1109/ICME.2019.00177

  30. Luo X, Chen C, Zhong H, Zhang H, Deng M, Huang J, Hua X (2020) A survey on deep hashing methods. CoRR arXiv:abs/2003.03369

  31. Zhu J, Shu Y, Zhang J, Wang X, Wu S (2021) Triplet-object loss for large scale deep image retrieval. Int J Mach Learn Cybern 7:1–9

    Google Scholar 

  32. Qiao S, Wang R, Shan S, Chen X (2020) Deep heterogeneous hashing for face video retrieval. IEEE Trans Image Process 29:1299–1312. https://doi.org/10.1109/TIP.2019.2940683

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun Y, Yu S (2020) Deep supervised hashing with dynamic weighting scheme. In: 2020 5th IEEE International Conference on Big Data Analytics (ICBDA), pp. 57–62. https://doi.org/10.1109/ICBDA49040.2020.9101274

  34. Cao Z, Long M, Wang J, Yu PS (2017) Hashnet: Deep learning to hash by continuation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5609–5618. https://doi.org/10.1109/ICCV.2017.598

  35. Mo D, Wong WK, Liu X, Ge Y (2022) Concentrated hashing with neighborhood embedding for image retrieval and classification. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-021-01466-7

  36. Wang S, Li C, Shen H-L (2021) Equivalent continuous formulation of general hashing problem. IEEE Trans Cybern 51(8):4089–4099. https://doi.org/10.1109/TCYB.2019.2894020

    Article  Google Scholar 

  37. Leng C, Wu J, Cheng J, Bai X, Lu H (2015) Online sketching hashing. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2503–2511. https://doi.org/10.1109/CVPR.2015.7298865

  38. Chen X, Yang H, Zhao S, King I, Lyu MR (2021) Making online sketching hashing even faster. IEEE Trans Knowl Data Eng 33(3):1089–1101. https://doi.org/10.1109/TKDE.2019.2934687

    Article  Google Scholar 

  39. Weng Z, Zhu Y (2019) Online supervised sketching hashing for large-scale image retrieval. IEEE Access 7:88369–88379. https://doi.org/10.1109/ACCESS.2019.2926303

    Article  Google Scholar 

  40. Xing T, Ng WWY (2016) Semi-supervised online hashing. In: 2016 International Conference on Machine Learning and Cybernetics (ICMLC), vol. 1, pp. 311–317. https://doi.org/10.1109/ICMLC.2016.7860920

  41. Tian X, Ng WWY, Wang H (2021) Concept preserving hashing for semantic image retrieval with concept drift. IEEE Trans Cybern 51(10):5184–5197. https://doi.org/10.1109/TCYB.2019.2955130

    Article  Google Scholar 

  42. Weng Z, Zhu Y, Lan Y, Huang L (2019) A fast online spherical hashing method based on data sampling for large scale image retrieval. Neurocomputing 364. https://doi.org/10.1016/j.neucom.2019.06.053

  43. Lin M, Ji R, Liu H, Sun X, Yongjian W, Wu Y (2019) Towards optimal discrete online hashing with balanced similarity. Proc AAAI Conf Artif Intell 33:8722–8729. https://doi.org/10.1609/aaai.v33i01.33018722

    Article  Google Scholar 

  44. Huang L-K, Yang Q, Zheng W-S (2018) Online hashing. IEEE Trans Neural Netw Learn Syst 29(6):2309–2322. https://doi.org/10.1109/TNNLS.2017.2689242

    Article  MathSciNet  Google Scholar 

  45. Cakir F, Sclaroff S (2015) Adaptive hashing for fast similarity search. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp 1044–1052. https://doi.org/10.1109/ICCV.2015.125

  46. Cakir F, Sclaroff S (2015) Online supervised hashing. In: 2015 IEEE International Conference on Image Processing (ICIP), pp 2606–2610. https://doi.org/10.1109/ICIP.2015.7351274

  47. Cakir F, Bargal S, Sclaroff S (2015) Online supervised hashing for ever-growing datasets

  48. Lin M, Ji R, Chen S, Sun X, Lin C-W (2020) Similarity-preserving linkage hashing for online image retrieval. IEEE Trans Image Process 29:5289–5300. https://doi.org/10.1109/TIP.2020.2981879

    Article  MathSciNet  MATH  Google Scholar 

  49. Wu D, Dai Q, Liu J, Li B, Wang W (2019) Deep incremental hashing network for efficient image retrieval. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9061–9069. https://doi.org/10.1109/CVPR.2019.00928

  50. Tian X, Ng WWY, Wang H, Kwong S (2021) Complementary incremental hashing with query-adaptive re-ranking for image retrieval. IEEE Trans Multimed 23:1210–1224. https://doi.org/10.1109/TMM.2020.2994509

    Article  Google Scholar 

  51. Ng W, Jiang X, Tian X, Pelillo M, Wang H, Kwong S (2020) Incremental hashing with sample selection using dominant sets. Int J Mach Learn Cybern 11. https://doi.org/10.1007/s13042-020-01145-z

  52. Ng WWY, Tian X, Pedrycz W, Wang X, Yeung DS (2019) Incremental hash-bit learning for semantic image retrieval in nonstationary environments. IEEE Trans Cybern 49(11):3844–3858. https://doi.org/10.1109/TCYB.2018.2846760

    Article  Google Scholar 

  53. Misra J, Gries D (1982) Finding repeated elements. Sci Comput Program 2:143–152. https://doi.org/10.1016/0167-6423(82)90012-0

    Article  MathSciNet  MATH  Google Scholar 

  54. Lin M, Ji R, Liu H, Sun X, Chen S, Tian Q (2020) Hadamard matrix guided online hashing. Int J Comput Vis 128

  55. Lin M, Ji R, Sun X, Zhang B, Huang F, Tian Y, Tao D (2020) Fast class-wise updating for online hashing. IEEE Trans Pattern Anal Mach Intell 1–1 https://doi.org/10.1109/TPAMI.2020.3042193

  56. Weng Z, Zhu Y (2021) Online hashing with bit selection for image retrieval. IEEE Trans Multimed 23:1868–1881. https://doi.org/10.1109/TMM.2020.3004962

    Article  Google Scholar 

  57. Cakir F, He K, Bargal SA, Sclaroff S (2017) Mihash: Online hashing with mutual information. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 437–445. https://doi.org/10.1109/ICCV.2017.55

  58. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42:145–175. https://doi.org/10.1023/A:1011139631724

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61876066 and in part by China Postdoctoral Science Foundation under Grant 2020M672631.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Tian or Wing W. Y. Ng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tables of summaries

Tables of summaries

See Tables 3 and 4.

Table 3 Major processes of dynamic hashing methods
Table 4 Goals met of dynamic hashing methods

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Tian, X., Ng, W.W.Y. et al. Recent development of hashing-based image retrieval in non-stationary environments. Int. J. Mach. Learn. & Cyber. 13, 3867–3886 (2022). https://doi.org/10.1007/s13042-022-01630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01630-7

Keywords

Navigation