Skip to main content
Log in

Robust two-phase registration method for three-dimensional point set under the Bayesian mixture framework

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

A Correction to this article was published on 05 April 2023

This article has been updated

Abstract

In order to establish effective correspondences, a two-phase registration method for three-dimensional point set is proposed under the Bayesian mixture framework. In the first phase, the mixture model consisted of student’s t distribution and von Mises-Fisher (vMF) distribution is designed to perform similarity point set registration for recovering rotation transformation, where both distributions are used to measure positional and directional errors, respectively. The second phase implements nonrigid (affine as a particular case) registration between data point set and transformed model point set obtained in the first phase, which is based on student’s t mixture model (SMM) using positional information only. In each phase, variational inference is used to obtain approximate posteriors of model parameters. The experimental results on various datasets demonstrate that our proposed method can achieve better registration performance in terms of robustness to rotation and outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

Notes

  1. https://www.dir-lab.com/Downloads.html.

  2. http://graphics.stanford.edu/data/3Dscanrep/.

  3. http://alice.loria.fr/index.php/software/7-data/37-unwrapped-meshes.html.

  4. https://gfx.cs.princeton.edu/proj/sugcon/models/.

References

  1. Beal MJ (2003) Variational algorithms for approximate Bayesian inference. Dissertation, University of London

  2. Bing J, Vemuri BC (2011) Robust point set registration using Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell 33(8):1633–1645. https://doi.org/10.1109/TPAMI.2010.223

    Article  Google Scholar 

  3. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  4. Chui HL, Rangarajan A (2003) A new point matching algorithm for non-rigid registration. Comput Vis Image Understand 89(2–3):114–141. https://doi.org/10.1016/S1077-3142(03)00009-2

    Article  MATH  Google Scholar 

  5. Fan AX, Jiang XY, Ma Y, Mei XG, Ma JY (2021) Smoothness-driven consensus based on compact representation for robust feature matching. IEEE Trans Neural Netw Learn Syst 99:1–1. https://doi.org/10.1109/TNNLS.2021.3118409

    Article  Google Scholar 

  6. Goshtasby AA (2005) 2-D and 3-D image registration: for medical, remote sensing, and industrial applications. Wiley-Interscience, Dayton

    Google Scholar 

  7. He QQ, Zhou J, Xu SJ, Yang Y, Liu Y, Liu YH (2020) Adaptive hierarchical probabilistic model using structured variational inference for point set registration. IEEE Trans Fuzzy Syst 98(11):2784–2798. https://doi.org/10.1109/TFUZZ.2020.2974433

    Article  Google Scholar 

  8. Hirose O (2021) A Bayesian formulation of coherent point drift. IEEE Trans Pattern Anal Mach Intell 43(7):2269–2286. https://doi.org/10.1109/TPAMI.2020.2971687

    Article  Google Scholar 

  9. Ma JY, Zhao J, Tian JW, Bai X, Tu ZW (2013) Regularized vector field learning with sparse approximation for mismatch removal. Pattern Recogn 46(12):3519–3532. https://doi.org/10.1016/j.patcog.2013.05.017

    Article  MATH  Google Scholar 

  10. Ma JY, Zhao J, Tian JW, Yuille AL, Tu ZW (2014) Robust point matching via vector field consensus. IEEE Trans Image Process 23(4):1706–1721. https://doi.org/10.1109/TIP.2014.2307478

    Article  MathSciNet  MATH  Google Scholar 

  11. Ma JY, Qiu WC, Zhao J, Ma Y, Yuille AL, Tu ZW (2015) Robust L2E estimation of transformation for non-rigid registration. IEEE Trans Signal Process 63(5):1115–1129. https://doi.org/10.1109/TSP.2014.2388434

    Article  MathSciNet  MATH  Google Scholar 

  12. Ma JY, Zhou HB, Zhao J, Gao Y, Jiang JJ, Tian JW (2015) Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans Geosci Remote Sens 53(12):6469–6481. https://doi.org/10.1109/TGRS.2015.2441954

    Article  Google Scholar 

  13. Ma JY, Wu J, Zhao J, Jiang JJ, Zhou HB, Sheng QZ (2018) Nonrigid point set registration with robust transformation learning under manifold regularization. IEEE Trans Neural Netw Learn Syst 30(12):3584–3597. https://doi.org/10.1109/TNNLS.2018.2872528

    Article  MathSciNet  Google Scholar 

  14. Ma JY, Jiang XG, Jiang JJ, Gao Y (2019) Feature-guided Gaussian mixture model for image matching. Pattern Recogn 92:231–245. https://doi.org/10.1016/j.patcog.2019.04.001

    Article  Google Scholar 

  15. Ma JY, Zhao J, Jiang JJ, Zhou HB, Guo XJ (2019) Locality preserving matching. Int J Comput Vis 127(2):512–531. https://doi.org/10.1007/s11263-018-1117-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma JY, Jiang XY, Fan AX, Jiang JJ, Yan JC (2021) Image matching from handcrafted to deep features: a survey. Int J Comput Vis 129(1):23–79. https://doi.org/10.1007/s11263-020-01359-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma XK, Xu SJ, Zhou J, Yang QL, Yang Y, Yang K, Ong SH (2020) Point set registration with mixture framework and variational inference. Pattern Recogn 104(3):107345. https://doi.org/10.1016/j.patcog.2020.107345

    Article  Google Scholar 

  18. Maiseli B, Gu YF, Gao HJ (2017) Recent developments and trends in point set registration methods. J Vis Commun Image R 46:95–106. https://doi.org/10.1016/j.jvcir.2017.03.012

    Article  Google Scholar 

  19. Mclachlan GL, Peel D (2000) Finite mixture model. Wiley, Chichester. https://doi.org/10.1002/0471721182

    Book  MATH  Google Scholar 

  20. Min Z, Wang JL, Meng QH (2020) Robust generalized point cloud registration with orientational data based on expectation maximization. IEEE Trans Autom Sci Eng 17(1):207–221. https://doi.org/10.1109/TASE.2019.2914306

    Article  Google Scholar 

  21. Min Z, Meng Max QH (2021) Robust and accurate nonrigid point set registration algorithm to accommodate anisotropic positional localization error based on coherent point drift. IEEE Trans Autom Sci Eng 18(4):1939–1955. https://doi.org/10.1109/TASE.2020.3027073

    Article  Google Scholar 

  22. Min Z, Wang JL, Pan J, Meng QH (2021) Generalized 3-D point set registration with hybrid mixture models for computer-assisted orthopedic surgery: from isotropic to anisotropic positional error. IEEE Trans Autom Sci Eng 18(4):1679–1691. https://doi.org/10.1109/tase.2020.3014420

    Article  Google Scholar 

  23. Min Z, Zhu DL, Ren HL, Meng QH (2021) Feature-guided nonrigid 3-D point set registration framework for image-guided liver surgery: from isotropic positional noise to anisotropic positional noise. IEEE Trans Autom Sci Eng 18(2):471–483. https://doi.org/10.1109/TASE.2020.3001207

    Article  Google Scholar 

  24. Moigne JL, Netanyahu N, Eastman RD (2011) Image registration for remote sensing. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  25. Murphy KP (2012) Machine learning: a probabilistic perspective. The MIT Press, Cambridge, Massachusetts, London

    MATH  Google Scholar 

  26. Myronenko A, Song XB (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275. https://doi.org/10.1109/TPAMI.2010.46

    Article  Google Scholar 

  27. Oliveira FPM, Tavares JMRS (2014) Medical image registration: a review. Comput Method Biomech 17(2):73–93. https://doi.org/10.1080/10255842.2012.670855

    Article  Google Scholar 

  28. Peel D, Mclachlan GJ (2000) Robust mixture modelling using the t distribution. Statis Comput 10:339–348. https://doi.org/10.1023/A:1008981510081

    Article  Google Scholar 

  29. Qu HB, Wang JQ, Li B, Yu M (2016) Probabilistic model for robust affine and non-rigid point set matching. IEEE Trans Pattern Anal Mach Intell 39(2):371–384. https://doi.org/10.1109/TPAMI.2016.2545659

    Article  Google Scholar 

  30. Ravikumar N, Gooya A, Frangi AF, Taylor ZA (2017) Generalised coherent point drift for group-wise registration of multi-dimensional point sets. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 10433, pp 309–316. https://doi.org/10.1007/978-3-319-66182-7_36

  31. Subrahmanya N, Shin YC (2013) A variational Bayesian framework for group feature selection. Int J Mach Learn Cyber 4(6):609–619. https://doi.org/10.1007/s13042-012-0121-9

    Article  Google Scholar 

  32. Tam GKL, Cheng ZQ, Lai YK, Langbein FC, Liu YH, Marshall D, Martin RR, Sun XF, Rosin PL (2013) Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans Vis Comput Graph 19(7):1199–1217. https://doi.org/10.1109/TVCG.2012.310

    Article  Google Scholar 

  33. Wu C, Wang YY, Karimi HR (2014) A robust aerial image registration method using Gaussian mixture models. Neurocomputing 144:546–552. https://doi.org/10.1016/j.neucom.2014.04.012

    Article  Google Scholar 

  34. Yang Y, Ong S, Foong K (2015) A robust global and local mixture distance based on nonrigid point set registration. Pattern Recognit 48(1):156–173. https://doi.org/10.1016/j.patcog.2014.06.017

    Article  Google Scholar 

  35. Yang LJ, Tian Z, Wen JH, Yan WD (2018) Adaptive non-rigid point set registration based on variational Bayesian. J Northwest Polytech Univ 36(5):942–948. https://doi.org/10.1051/jnwpu/20183650942

    Article  Google Scholar 

  36. Zhang PP, Qiao Y, Wang SZ, Yang J, Zhu YM (2017) A robust coherent point drift approach based on rotation invariant shape context. Neurocomputing 219:455–473. https://doi.org/10.1016/j.neucom.2016.09.058

    Article  Google Scholar 

  37. Zhou ZY, Zheng J, Dai YK, Zhou Z, Chen S (2014) Robust non-rigid point set registration using student’s-t mixture model. PLoS ONE 9(3):e91381. https://doi.org/10.1371/journal.pone.0091381

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities, CHD (300102129108, 300102120110), National Nature Science Foundation of China (11801438, 12001057), Key Research and Development Program of Shaanxi (2021NY-170) and Fundamental Research Funds for the Central Universities, CHD (300102120201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The similarity point set registration

The updating formulae of partial parameters in the first phase are given as follows.


(1) Indicated variables \({\mathbf{Z}}\) and hidden variables \({\mathbf{U}}\).

Let \(\varpi_{nm} \,{ = }\,\left\langle {\Lambda_{m} } \right\rangle \left( {{\mathbf{x}}_{n} - {\mathbf{w}}_{m} } \right)^{T} \left( {{\mathbf{x}}_{n} - {\mathbf{w}}_{m} } \right)\), where \(\left\langle \cdot \right\rangle\) denotes the expectation with respect to \(q\left( \cdot \right)\) with subscript omission. Considering the uncertainty of hidden variables \(u_{nm}\), the expectation of indicated variable \(z_{nm}\) is given as follows:

$$\left\langle {z_{nm} } \right\rangle\, { = }\,\frac{{q\left( {z_{nm} { = }1} \right)}}{{\sum\nolimits_{{m{ = }1}}^{M} {q\left( {z_{nm} { = }1} \right)} }}{, }\forall n{,}\forall m,$$
(20)

where \(q\left( {z_{nm} { = }1} \right) \propto {{\left\langle {\pi_{m} } \right\rangle \left\langle {\Lambda_{m} } \right\rangle^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-\nulldelimiterspace} 2}}} \Gamma \left( {{{\left( {\tau_{m} { + }D} \right)} \mathord{\left/ {\vphantom {{\left( {\tau_{m} { + }D} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\mathcal{F} \left( {{\hat{\mathbf{x}}}_{n} \left| {{\hat{\mathbf{y}}}_{m} ,{\mathbf{R}}{,}\kappa } \right.} \right)} \mathord{\left/ {\vphantom {{\left\langle {\pi_{m} } \right\rangle \left\langle {\Lambda_{m} } \right\rangle^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-\nulldelimiterspace} 2}}} \Gamma \left( {{{\left( {\tau_{m} { + }D} \right)} \mathord{\left/ {\vphantom {{\left( {\tau_{m} { + }D} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)f_{vm} \left( {{\hat{\mathbf{x}}}_{n} \left| {{\hat{\mathbf{y}}}_{m} ,{\mathbf{R}}{,}\kappa } \right.} \right)} {\left( {\tau_{m}^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-\nulldelimiterspace} 2}}} \Gamma \left( {{{\tau_{m} } \mathord{\left/ {\vphantom {{\tau_{m} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\left( {1{ + }{{\varpi_{nm} } \mathord{\left/ {\vphantom {{\varpi_{nm} } {\tau_{m} }}} \right. \kern-\nulldelimiterspace} {\tau_{m} }}} \right)^{{{{\left( {\tau_{m} { + }D} \right)} \mathord{\left/ {\vphantom {{\left( {\tau_{m} { + }D} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}}} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\tau_{m}^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-\nulldelimiterspace} 2}}} \Gamma \left( {{{\tau_{m} } \mathord{\left/ {\vphantom {{\tau_{m} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\left( {1{ + }{{\varpi_{nm} } \mathord{\left/ {\vphantom {{\varpi_{nm} } {\tau_{m} }}} \right. \kern-\nulldelimiterspace} {\tau_{m} }}} \right)^{{{{\left( {\tau_{m} { + }D} \right)} \mathord{\left/ {\vphantom {{\left( {\tau_{m} { + }D} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}}} } \right)}}.\)

Given the condition \(z_{nm} { = }1\), the posterior of hidden variable \(u_{nm}\) is still a Gamma distribution with shape and scale parameters given as follows:

$$\alpha_{nm}\, { = }\,\frac{{\tau_{m} { + }D}}{2},$$
(21)
$$\beta_{nm}\, { = }\,\frac{{\tau_{m} { + }\varpi_{nm} }}{2}.$$
(22)

(2) Mixing coefficient \({{\varvec{\uppi}}}\).

For the mixing coefficient \({{\varvec{\uppi}}}\), the posterior is a Dirichlet distribution with component \(\xi_{m}\) given by:

$$\xi_{m} = \sum\limits_{{n{ = }1}}^{N} {\left\langle {z_{nm} } \right\rangle } { + }\xi_{0}^{m} .$$
(23)

(3) Isotropic precision \(\left\{ {\Lambda_{m} } \right\}\).

The approximate posterior of isotropic precision \(\Lambda_{m}\) for the \(m^{th}\) mixture component is still a Gamma distribution with updated shape and scale parameters:

$$\gamma_{m} \,{ = }\,\frac{D}{{2}}\sum\limits_{{n{ = }1}}^{N} {\left\langle {z_{nm} } \right\rangle } + \gamma_{0} ,$$
(24)
$$\delta_{m}\, { = }\,\frac{1}{2}\sum\limits_{{n{ = }1}}^{N} {\left\langle {z_{nm} u_{nm} } \right\rangle \left( {{\mathbf{x}}_{n} - {\mathbf{w}}_{m} } \right)^{T} \left( {{\mathbf{x}}_{n} - {\mathbf{w}}_{m} } \right)} + \delta_{0} .$$
(25)

(4) Degree of freedom \(\left\{ {\tau_{m} } \right\}\).

By letting \({{\partial {\mathcal{L}}_{1} \left( q \right)} \mathord{\left/ {\vphantom {{\partial {\mathcal{L}}_{1} \left( q \right)} {\partial \tau_{m} }}} \right. \kern-\nulldelimiterspace} {\partial \tau_{m} }} = 0\) and using the stirling’s formula, we can obtain the below closed-form approximation:

$$\tau_{m} \approx - \frac{1}{{1{ + }{{\sum\nolimits_{n = 1}^{N} {\left\langle {z_{nm} } \right\rangle \left( {\left\langle {\ln u_{nm} } \right\rangle - \left\langle {u_{nm} } \right\rangle } \right)} } \mathord{\left/ {\vphantom {{\sum\nolimits_{n = 1}^{N} {\left\langle {z_{nm} } \right\rangle \left( {\left\langle {\ln u_{nm} } \right\rangle - \left\langle {u_{nm} } \right\rangle } \right)} } {\sum\nolimits_{n = 1}^{N} {\left\langle {z_{nm} } \right\rangle } }}} \right. \kern-\nulldelimiterspace} {\sum\nolimits_{n = 1}^{N} {\left\langle {z_{nm} } \right\rangle } }}}}.$$
(26)

Appendix B: The nonrigid point set registration

The updating formulae of partial parameters in the second phase are given as below.


(1) Indicated variables \({{\varvec{\Xi}}}\) and hidden variables \({{\varvec{\upchi}}}\).

Let \(\omega_{nm} \,{ = }\,\left\langle {\left( {{\mathbf{x}}_{n} - {\mathbf{A\overline{w}}}_{m} - {\mathbf{B\Phi }}\left( {{\mathbf{y}}_{m} } \right)} \right)^{T} {{\varvec{\Delta}}}_{m} \left( {{\mathbf{x}}_{n} - {\mathbf{A\overline{w}}}_{m} { - }{\mathbf{B\Phi }}\left( {{\mathbf{y}}_{m} } \right)} \right)} \right\rangle\), we have

$$\left\langle {\Xi_{nm} } \right\rangle\, { = }\,\frac{{q\left( {\Xi_{nm} { = }1} \right)}}{{\sum\nolimits_{{m{ = }1}}^{M} {q\left( {\Xi_{nm} { = }1} \right)} }}{,}\forall n{,}\forall m.$$
(27)

where \(q\left( {\Xi_{nm} { = }1} \right) \propto {{\left\langle {\Pi_{m} } \right\rangle \left| {{\left\langle{{\varvec{\Delta}}}_{m}\right\rangle } } \right|^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} \Gamma \left( {{{\left( {v_{m} { + }D} \right)} \mathord{\left/ {\vphantom {{\left( {v_{m} { + }D} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)} \mathord{\left/ {\vphantom {{\left\langle {\Pi_{m} } \right\rangle \left\langle {\left| {{{\varvec{\Delta}}}_{m} } \right|} \right\rangle^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} \Gamma \left( {{{\left( {v_{m} { + }D} \right)} \mathord{\left/ {\vphantom {{\left( {v_{m} { + }D} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)} {\left( {v_{m} } \right)^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-\nulldelimiterspace} 2}}} \Gamma \left( {{{v_{m} } \mathord{\left/ {\vphantom {{v_{m} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\left( {1{ + }{{\omega_{nm} } \mathord{\left/ {\vphantom {{\omega_{nm} } {v_{m} }}} \right. \kern-\nulldelimiterspace} {v_{m} }}} \right)^{{{{\left( {v_{m} { + }D} \right)} \mathord{\left/ {\vphantom {{\left( {v_{m} { + }D} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}}} }}} \right. \kern-\nulldelimiterspace} {\left( {v_{m} } \right)^{{{D \mathord{\left/ {\vphantom {D 2}} \right. \kern-\nulldelimiterspace} 2}}} \Gamma \left( {{{v_{m} } \mathord{\left/ {\vphantom {{v_{m} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\left( {1{ + }{{\omega_{nm} } \mathord{\left/ {\vphantom {{\omega_{nm} } {v_{m} }}} \right. \kern-\nulldelimiterspace} {v_{m} }}} \right)^{{{{\left( {v_{m} { + }D} \right)} \mathord{\left/ {\vphantom {{\left( {v_{m} { + }D} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}}} }}.\) The posterior of hidden variable \(\chi_{nm}\) follows a Gamma distribution with parameters:

$$\overline{\alpha }_{nm}\, { = }\,\frac{{v_{m} { + }D}}{2},$$
(28)
$$\overline{\beta }_{nm} \,{ = }\,\frac{{v_{m} { + }\omega_{nm} }}{2}.$$
(29)

(2) Mixing coefficient \({{\varvec{\Pi}}}\).

The posterior of mixing coefficient \({{\varvec{\Pi}}}\) follows a Dirichlet distribution with component \(k_{m}\) given by:

$$k_{m} = \sum\limits_{{n{ = }1}}^{N} {\left\langle {\Xi_{nm} } \right\rangle } { + }k_{0}^{m} .$$
(30)

(3) Precision matrix \({{\varvec{\Delta}}}\)

For the anisotropic precision matrix \({{\varvec{\Delta}}}_{m}\) of the \(m^{th}\) mixture component, its posterior follows a Wishart distribution, i.e., \(q\left( {\Delta_{m} } \right) \sim W\left( {\Delta_{m} \left| {r_{m} ,{\mathbf{S}}_{m} } \right.} \right)\), where

$$r_{m} { = }\sum\limits_{{n{ = }1}}^{N} {\left\langle {\Xi_{nm} } \right\rangle } { + }r_{0} ,$$
(31)
$${\mathbf{S}}_{m}^{ - 1}\, { = }\,{\mathbf{S}}_{0}^{ - 1} { + }\sum\limits_{{n{ = }1}}^{N} {\left\langle {\Xi_{nm} \chi_{nm} } \right\rangle \left\langle {\left( {{\mathbf{x}}_{n} - {\mathbf{A\overline{w}}}_{m} - {\mathbf{B\Phi }}\left( {{\mathbf{y}}_{m} } \right)} \right)\left( {{\mathbf{x}}_{n} - {\mathbf{A\overline{w}}}_{m} - {\mathbf{B\Phi }}\left( {{\mathbf{y}}_{m} } \right)} \right)^{T} } \right\rangle } .$$
(32)

When the precision is isotropic, the posterior degenerates to be a Gamma distribution.


(4) Precision \({{\varvec{\upupsilon}}}\)

For the \(l\text{th}\) element of precision parameter \({{\varvec{\upupsilon}}}\), the posterior follows a Gamma distribution with shape and scale parameters given as follows:

$$a_{l}\, { = }\,a_{0} { + }\frac{D}{2},$$
(33)
$$b_{l} \,{ = }\,b_{0} { + }\frac{1}{2}\sum\limits_{{q{ = }1}}^{D} {\left\langle {{\mathbf{A}}_{ql}^{2} } \right\rangle } .$$
(34)

(5) Precision \({{\varvec{\upeta}}}\)

For the \(l\text{{th}}\) element of precision parameter \({{\varvec{\upeta}}}\), the posterior follows a Gamma distribution with shape and scale parameters given as follows:

$$c_{l} \,{ = }\,c_{0} { + }\frac{D}{2},$$
(35)
$$d_{l}\, { = }\,d_{0} { + }\frac{1}{2}\sum\limits_{{q{ = }1}}^{D} {\left\langle {{\mathbf{B}}_{ql}^{2} } \right\rangle } .$$
(36)

(6) Regularization parameter \(\lambda\)

The posterior distribution of regularization parameter \(\lambda\) is still a Gamma distribution, where scale and shape parameters can be updated as follows:

$$\sigma = \sigma_{0} + \frac{MD}{2},$$
(37)
$$\varsigma = \varsigma_{0} + \frac{1}{2}\sum\limits_{q = 1}^{D} {\left\langle {{\mathbf{B}}_{q \cdot } {\mathbf{\Phi B}}_{q \cdot }^{T} } \right\rangle } .$$
(38)

In this way, adaptively updating strategy can avoid inappropriate parameter settings.


(7) Degree of freedom \(\left\{ {v_{m} } \right\}\).

Similar to the Eq. (26), we have the following approximate updating equation:

$$v_{m} \approx - \frac{1}{{1{ + }{{\sum\nolimits_{n = 1}^{N} {\left\langle {\Xi_{nm} } \right\rangle \left( {\left\langle {\ln \chi_{nm} } \right\rangle - \left\langle {\chi_{nm} } \right\rangle } \right)} } \mathord{\left/ {\vphantom {{\sum\nolimits_{n = 1}^{N} {\left\langle {\Xi_{nm} } \right\rangle \left( {\left\langle {\ln \chi_{nm} } \right\rangle - \left\langle {\chi_{nm} } \right\rangle } \right)} } {\sum\nolimits_{n = 1}^{N} {\left\langle {\Xi_{nm} } \right\rangle } }}} \right. \kern-\nulldelimiterspace} {\sum\nolimits_{n = 1}^{N} {\left\langle {\Xi_{nm} } \right\rangle } }}}}.$$
(39)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Ji, N., Wang, C. et al. Robust two-phase registration method for three-dimensional point set under the Bayesian mixture framework. Int. J. Mach. Learn. & Cyber. 14, 2271–2285 (2023). https://doi.org/10.1007/s13042-022-01673-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01673-w

Keywords

Navigation