Abstract
The deep learning model has demonstrated excellent performance in the fitting of data and knowledge. For hyperspectral images, accurate classification is still difficult in the case of limited samples and high-dimensional relevance. In this paper, we propose a collaborative optimization parallel convolution network consisting of 3D-2D CNN for hyperspectral image classification. One branch of the parallel network is a 3D-CNN consisting of three blocks for extracting spectrum features and spectrum correlation. The three blocks include a 3D bottleneck block (convolution), SEblock (attention), and a spatial-spectrum convolution module. Secondly, the diverse Region feature extraction network is employed as a spatial-spectrum feature computing module. Finally, the classification predictions from the two branches are fused to obtain the classification results. By comparing the experimental results conducted on three datasets, the proposed method performs significantly better than the SOTA methods in comparison and has better generalization capability.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Singh S, KV SB (2022) Role of hyperspectral imaging for precision agriculture monitoring. ADBU J Eng Technol 11(1):011010008
Wieme J, Mollazade K, Malounas I, Zude-Sasse M, Zhao M, Gowen A, Argyropoulos D, Fountas S, Van Beek J (2022) Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: a review. Biosyst Eng 222:156–176
Douglas A, Kereszturi G, Schaefer LN, Kennedy B (2022) Rock alteration mapping in and around a fossil shallow intrusion at Mt. Ruapehu New Zealand with laboratory and aerial hyperspectral imaging. J Volcanol Geotherm Res 432:107700
Nisha A, Anitha A (2022) Current advances in hyperspectral remote sensing in urban planning. In: 2022 Third International Conference on intelligent computing instrumentation and control technologies (ICICICT), vol 11, IEEE, p 94–98
Yu C, Wang Y, Song M, Chang C-I (2018) Class signature-constrained background-suppressed approach to band selection for classification of hyperspectral images. IEEE Trans Geosci Remote Sens 57(1):14–31
Licciardi G, Marpu PR, Chanussot J, Benediktsson JA (2011) Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci Remote Sens Lett 9(3):447–451
Falco N, Benediktsson JA, Bruzzone L (2014) A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2183–2199
Tang YY, Yuan H, Li L (2014) Manifold-based sparse representation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 52(12):7606–7618
Su H, Sheng Y, Du P, Chen C, Liu K (2015) Hyperspectral image classification based on volumetric texture and dimensionality reduction. Front Earth Sci 9(2):225–236
Gu Y, Liu T, Jia X, Benediktsson JA, Chanussot J (2016) Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(6):3235–3247
Zhang H, Li J, Huang Y, Zhang L (2013) A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2056–2065
Fang L, Li S, Kang X, Benediktsson JA (2014) Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans Geosci Remote Sens 52(12):7738–7749
Li J, Zhang H, Zhang L (2015) Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(10):5338–5351
Sun Y, Qin A, Bandoh Y, Gao C, Hiwasaki Y (2022) Active learning for hyperspectral image classification via hypergraph neural network. In: 2022 IEEE International Conference on image processing (ICIP), IEEE, pp 2576–2580. https://doi.org/10.1109/ICIP46576.2022.9897901
Shi C, Pun C-M (2018) Superpixel-based 3d deep neural networks for hyperspectral image classification. Pattern Recognit 74:600–616
Liu L, Wang Y, Peng J, Zhang L, Zhang B, Cao Y (2020) Latent relationship guided stacked sparse autoencoder for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 58(5):3711–3725
Zhong P, Gong Z, Li S, Schönlieb C-B (2017) Learning to diversify deep belief networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(6):3516–3530
Shi C, Pun C-M (2018) Multi-scale hierarchical recurrent neural networks for hyperspectral image classification. Neurocomputing 294:82–93
Liu Z, Mao H, Wu C-Y, Feichtenhofer C, Darrell T, Xie S (2022) A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp 11976–11986
Li W, Chen C, Zhang M, Li H, Du Q (2018) Data augmentation for hyperspectral image classification with deep cnn. IEEE Geosci Remote Sens Lett 16(4):593–597
Lu Z, Liang S, Yang Q, Du B (2022) Evolving block-based convolutional neural network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–21
Sharifi O, Mokhtarzadeh M, Asghari Beirami B (2022) A new deep learning approach for classification of hyperspectral images: feature and decision level fusion of spectral and spatial features in multiscale cnn. Geocarto Int 37(14):4208–4233
Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sens 2015:258619
Gong Z, Zhong P, Yu Y, Hu W, Li S (2019) A cnn with multiscale convolution and diversified metric for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(6):3599–3618
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, vol 219, pp 770–778
Firat H, Asker ME, Bayindir Mİ, Hanbay D (2022) 3d residual spatial–spectral convolution network for hyperspectral remote sensing image classification. Neural Comput Appl, pp 1–19. https://doi.org/10.1007/s00521-022-07933-8
Gao Z, Tong L, Zhou J, Qian B, Yu J, Xiao C (2021) Stochastic depth residual network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–13
Xue Z, Yu X, Liu B, Tan X, Wei X (2021) Hresnetam: hierarchical residual network with attention mechanism for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 14:3566–3580
Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251
Sun K, Wang A, Sun X, Zhang T (2022) Hyperspectral image classification method based on m-3dcnn-attention. J Appl Remote Sens 16(2):026507
Yin J, Qi C, Huang W, Chen Q, Qu J (2022) Multibranch 3d-dense attention network for hyperspectral image classification. IEEE Access 10:71886–71898
Li J, Bruzzone L, Liu S (2015) Deep feature representation for hyperspectral image classification. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, pp 4951–4954. https://doi.org/10.1109/IGARSS.2015.7326943
Mei S, Ji J, Geng Y, Zhang Z, Li X, Du Q (2019) Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans Geosci Remote Sens 57(9):6808–6820
Liu Y, Cao G, Sun Q, Siegel M (2015) Hyperspectral classification via learnt features. In: 2015 IEEE International Conference on image processing (ICIP), IEEE, pp 2591–2595. https://doi.org/10.1109/ICIP.2015.7351271
Chang Y-L, Tan T-H, Lee W-H, Chang L, Chen Y-N, Fan K-C, Alkhaleefah M (2022) Consolidated convolutional neural network for hyperspectral image classification. Remote Sens 14(7):1571
Yuan Q, Ang Y, Shafri H (2021) Hyperspectral image classification using residual 2d and 3d convolutional neural network joint attention model. Int Arch Photogramm Remote Sens Spatial Inf Sci 44:187–193
Ghaderizadeh S, Abbasi-Moghadam D, Sharifi A, Zhao N, Tariq A (2021) Hyperspectral image classification using a hybrid 3d–2d convolutional neural networks. IEEE J Sel Top Appl Earth Observ Remote Sens 14:7570–7588
Li L, Deng Z, Zhang B, Liu Z, Wang J, Bian L, Yang C (2022) The real-time and stack fusion enhanced dual-channel network with attention modules for fast hyperspectral image classification. Geocarto Int (just-accepted), pp 1–31. https://doi.org/10.1080/10106049.2022.2138984
Roy SK, Krishna G, Dubey SR, Chaudhuri BB (2019) Hybridsn: exploring 3-d-2-d cnn feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett 17(2):277–281
Ma W, Ma H, Zhu H, Li Y, Li L, Jiao L, Hou B (2021) Hyperspectral image classification based on spatial and spectral kernels generation network. Inf Sci 578:435–456
Zhang A, Liu F, Liu J, Tang X, Gao W, Li D, Xiao L (2022) Domain-adaptive few-shot learning for hyperspectral image classification. IEEE Geosci Remote Sens Lett 19:1–5
Guo P, Yin Q (2020) Synergetic learning systems: concept, architecture, and algorithms. arXiv preprint arXiv:2006.06367
Jia S, Shen L, Li Q (2014) Gabor feature-based collaborative representation for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 53(2):1118–1129
Du P, Gan L, Xia J, Wang D (2018) Multikernel adaptive collaborative representation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(8):4664–4677
Li W, Du Q, Zhang F, Hu W (2014) Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(2):389–393
Xiong M, Ran Q, Li W, Zou J, Du Q (2015) Hyperspectral image classification using weighted joint collaborative representation. IEEE Geosci Remote Sens Lett 12(6):1209–1213
Li Z, Tang J, Mei T (2018) Deep collaborative embedding for social image understanding. IEEE Trans Pattern Anal Mach Intell 41(9):2070–2083
Song G, Chai W (2018) Collaborative learning for deep neural networks. In: Advances in neural information processing systems, in proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS). December 2018, pp 1837–1846
Fang S, Lin T (2021) Intra-model collaborative learning of neural networks. In: 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1–7. https://doi.org/10.1109/IJCNN52387.2021.9533324
Ma X, Wang H, Geng J (2016) Spectral-spatial classification of hyperspectral image based on deep auto-encoder. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4073–4085
Guo H, Liu J, Yang J, Xiao Z, Wu Z (2020) Deep collaborative attention network for hyperspectral image classification by combining 2-d cnn and 3-d cnn. IEEE J Sel Top Appl Earth Observ Remote Sens 13:4789–4802
Essa E, Xie X (2021) Deep collaborative learning for randomly wired neural networks. Electronics 10(14):1669
Zhou Y, Li X, Zhou Y, Wang Y, Hu Q, Wang W (2022) Deep collaborative multi-task network: a human decision process inspired model for hierarchical image classification. Pattern Recognit 124:108449
Yu C, Han R, Song M, Liu C, Chang C-I (2020) A simplified 2d–3d cnn architecture for hyperspectral image classification based on spatial-spectral fusion. IEEE J Sel Top Appl Earth Observ Remote Sens 13:2485–2501
Yang X, Ye Y, Li X, Lau RY, Zhang X, Huang X (2018) Hyperspectral image classification with deep learning models. IEEE Trans Geosci Remote Sens 56(9):5408–5423
Zhang M, Li W, Du Q (2018) Diverse region-based cnn for hyperspectral image classification. IEEE Trans Image Process 27(6):2623–2634
Ding S, Chen L (2009) Classification of hyperspectral remote sensing images with support vector machines and particle swarm optimization. In: 2009 International Conference on information engineering and computer science, IEEE, pp 1–5. https://doi.org/10.1109/ICIECS.2009.5363456
Li W, Tramel EW, Prasad S, Fowler JE (2013) Nearest regularized subspace for hyperspectral classification. IEEE Trans Geosci Remote Sens 52(1):477–489
Zhao Z, Hu D, Wang H, Yu X (2021) Center attention network for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 14:3415–3425
Camps-Valls G, Gomez-Chova L, Muñoz-Marí J, Vila-Francés J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97
Fang L, Li S, Duan W, Ren J, Benediktsson JA (2015) Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels. IEEE Trans Geosci Remote Sens 53(12):6663–6674
Zhou C, Tu B, Ren Q, Chen S (2021) Spatial peak-aware collaborative representation for hyperspectral imagery classification. IEEE Geosci Remote Sens Lett 19:1–5
Funding
The work was funded by Natural Science Foundation of China to Haifeng Sima with grant number 61602157, Science and Technology Department of Henan Province with grant number 202102210167, and by Doctoral Foundation under Grant B2016-37.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sima, H., Gao, F., Zhang, Y. et al. Collaborative optimization of spatial-spectrum parallel convolutional network (CO-PCN) for hyperspectral image classification. Int. J. Mach. Learn. & Cyber. 14, 2353–2366 (2023). https://doi.org/10.1007/s13042-022-01767-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-022-01767-5