Skip to main content

Advertisement

Log in

Collaborative optimization of spatial-spectrum parallel convolutional network (CO-PCN) for hyperspectral image classification

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The deep learning model has demonstrated excellent performance in the fitting of data and knowledge. For hyperspectral images, accurate classification is still difficult in the case of limited samples and high-dimensional relevance. In this paper, we propose a collaborative optimization parallel convolution network consisting of 3D-2D CNN for hyperspectral image classification. One branch of the parallel network is a 3D-CNN consisting of three blocks for extracting spectrum features and spectrum correlation. The three blocks include a 3D bottleneck block (convolution), SEblock (attention), and a spatial-spectrum convolution module. Secondly, the diverse Region feature extraction network is employed as a spatial-spectrum feature computing module. Finally, the classification predictions from the two branches are fused to obtain the classification results. By comparing the experimental results conducted on three datasets, the proposed method performs significantly better than the SOTA methods in comparison and has better generalization capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Singh S, KV SB (2022) Role of hyperspectral imaging for precision agriculture monitoring. ADBU J Eng Technol 11(1):011010008

  2. Wieme J, Mollazade K, Malounas I, Zude-Sasse M, Zhao M, Gowen A, Argyropoulos D, Fountas S, Van Beek J (2022) Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: a review. Biosyst Eng 222:156–176

    Article  Google Scholar 

  3. Douglas A, Kereszturi G, Schaefer LN, Kennedy B (2022) Rock alteration mapping in and around a fossil shallow intrusion at Mt. Ruapehu New Zealand with laboratory and aerial hyperspectral imaging. J Volcanol Geotherm Res 432:107700

  4. Nisha A, Anitha A (2022) Current advances in hyperspectral remote sensing in urban planning. In: 2022 Third International Conference on intelligent computing instrumentation and control technologies (ICICICT), vol 11, IEEE, p 94–98

  5. Yu C, Wang Y, Song M, Chang C-I (2018) Class signature-constrained background-suppressed approach to band selection for classification of hyperspectral images. IEEE Trans Geosci Remote Sens 57(1):14–31

    Article  Google Scholar 

  6. Licciardi G, Marpu PR, Chanussot J, Benediktsson JA (2011) Linear versus nonlinear pca for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci Remote Sens Lett 9(3):447–451

    Article  Google Scholar 

  7. Falco N, Benediktsson JA, Bruzzone L (2014) A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2183–2199

    Article  Google Scholar 

  8. Tang YY, Yuan H, Li L (2014) Manifold-based sparse representation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 52(12):7606–7618

    Article  Google Scholar 

  9. Su H, Sheng Y, Du P, Chen C, Liu K (2015) Hyperspectral image classification based on volumetric texture and dimensionality reduction. Front Earth Sci 9(2):225–236

    Article  Google Scholar 

  10. Gu Y, Liu T, Jia X, Benediktsson JA, Chanussot J (2016) Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans Geosci Remote Sens 54(6):3235–3247

    Article  Google Scholar 

  11. Zhang H, Li J, Huang Y, Zhang L (2013) A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2056–2065

    Article  Google Scholar 

  12. Fang L, Li S, Kang X, Benediktsson JA (2014) Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans Geosci Remote Sens 52(12):7738–7749

    Article  Google Scholar 

  13. Li J, Zhang H, Zhang L (2015) Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(10):5338–5351

    Article  Google Scholar 

  14. Sun Y, Qin A, Bandoh Y, Gao C, Hiwasaki Y (2022) Active learning for hyperspectral image classification via hypergraph neural network. In: 2022 IEEE International Conference on image processing (ICIP), IEEE, pp 2576–2580. https://doi.org/10.1109/ICIP46576.2022.9897901

  15. Shi C, Pun C-M (2018) Superpixel-based 3d deep neural networks for hyperspectral image classification. Pattern Recognit 74:600–616

    Article  Google Scholar 

  16. Liu L, Wang Y, Peng J, Zhang L, Zhang B, Cao Y (2020) Latent relationship guided stacked sparse autoencoder for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 58(5):3711–3725

    Article  Google Scholar 

  17. Zhong P, Gong Z, Li S, Schönlieb C-B (2017) Learning to diversify deep belief networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(6):3516–3530

    Article  Google Scholar 

  18. Shi C, Pun C-M (2018) Multi-scale hierarchical recurrent neural networks for hyperspectral image classification. Neurocomputing 294:82–93

    Article  Google Scholar 

  19. Liu Z, Mao H, Wu C-Y, Feichtenhofer C, Darrell T, Xie S (2022) A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp 11976–11986

  20. Li W, Chen C, Zhang M, Li H, Du Q (2018) Data augmentation for hyperspectral image classification with deep cnn. IEEE Geosci Remote Sens Lett 16(4):593–597

    Article  Google Scholar 

  21. Lu Z, Liang S, Yang Q, Du B (2022) Evolving block-based convolutional neural network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–21

    Google Scholar 

  22. Sharifi O, Mokhtarzadeh M, Asghari Beirami B (2022) A new deep learning approach for classification of hyperspectral images: feature and decision level fusion of spectral and spatial features in multiscale cnn. Geocarto Int 37(14):4208–4233

    Article  Google Scholar 

  23. Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sens 2015:258619

  24. Gong Z, Zhong P, Yu Y, Hu W, Li S (2019) A cnn with multiscale convolution and diversified metric for hyperspectral image classification. IEEE Trans Geosci Remote Sens 57(6):3599–3618

    Article  Google Scholar 

  25. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, vol 219, pp 770–778

  26. Firat H, Asker ME, Bayindir Mİ, Hanbay D (2022) 3d residual spatial–spectral convolution network for hyperspectral remote sensing image classification. Neural Comput Appl, pp 1–19. https://doi.org/10.1007/s00521-022-07933-8

  27. Gao Z, Tong L, Zhou J, Qian B, Yu J, Xiao C (2021) Stochastic depth residual network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–13

    Google Scholar 

  28. Xue Z, Yu X, Liu B, Tan X, Wei X (2021) Hresnetam: hierarchical residual network with attention mechanism for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 14:3566–3580

    Article  Google Scholar 

  29. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251

    Article  Google Scholar 

  30. Sun K, Wang A, Sun X, Zhang T (2022) Hyperspectral image classification method based on m-3dcnn-attention. J Appl Remote Sens 16(2):026507

    Article  Google Scholar 

  31. Yin J, Qi C, Huang W, Chen Q, Qu J (2022) Multibranch 3d-dense attention network for hyperspectral image classification. IEEE Access 10:71886–71898

    Article  Google Scholar 

  32. Li J, Bruzzone L, Liu S (2015) Deep feature representation for hyperspectral image classification. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, pp 4951–4954. https://doi.org/10.1109/IGARSS.2015.7326943

  33. Mei S, Ji J, Geng Y, Zhang Z, Li X, Du Q (2019) Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification. IEEE Trans Geosci Remote Sens 57(9):6808–6820

    Article  Google Scholar 

  34. Liu Y, Cao G, Sun Q, Siegel M (2015) Hyperspectral classification via learnt features. In: 2015 IEEE International Conference on image processing (ICIP), IEEE, pp 2591–2595. https://doi.org/10.1109/ICIP.2015.7351271

  35. Chang Y-L, Tan T-H, Lee W-H, Chang L, Chen Y-N, Fan K-C, Alkhaleefah M (2022) Consolidated convolutional neural network for hyperspectral image classification. Remote Sens 14(7):1571

    Article  Google Scholar 

  36. Yuan Q, Ang Y, Shafri H (2021) Hyperspectral image classification using residual 2d and 3d convolutional neural network joint attention model. Int Arch Photogramm Remote Sens Spatial Inf Sci 44:187–193

    Article  Google Scholar 

  37. Ghaderizadeh S, Abbasi-Moghadam D, Sharifi A, Zhao N, Tariq A (2021) Hyperspectral image classification using a hybrid 3d–2d convolutional neural networks. IEEE J Sel Top Appl Earth Observ Remote Sens 14:7570–7588

    Article  Google Scholar 

  38. Li L, Deng Z, Zhang B, Liu Z, Wang J, Bian L, Yang C (2022) The real-time and stack fusion enhanced dual-channel network with attention modules for fast hyperspectral image classification. Geocarto Int (just-accepted), pp 1–31. https://doi.org/10.1080/10106049.2022.2138984

  39. Roy SK, Krishna G, Dubey SR, Chaudhuri BB (2019) Hybridsn: exploring 3-d-2-d cnn feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett 17(2):277–281

    Article  Google Scholar 

  40. Ma W, Ma H, Zhu H, Li Y, Li L, Jiao L, Hou B (2021) Hyperspectral image classification based on spatial and spectral kernels generation network. Inf Sci 578:435–456

    Article  MathSciNet  Google Scholar 

  41. Zhang A, Liu F, Liu J, Tang X, Gao W, Li D, Xiao L (2022) Domain-adaptive few-shot learning for hyperspectral image classification. IEEE Geosci Remote Sens Lett 19:1–5

  42. Guo P, Yin Q (2020) Synergetic learning systems: concept, architecture, and algorithms. arXiv preprint arXiv:2006.06367

  43. Jia S, Shen L, Li Q (2014) Gabor feature-based collaborative representation for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 53(2):1118–1129

    Google Scholar 

  44. Du P, Gan L, Xia J, Wang D (2018) Multikernel adaptive collaborative representation for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(8):4664–4677

    Article  Google Scholar 

  45. Li W, Du Q, Zhang F, Hu W (2014) Collaborative-representation-based nearest neighbor classifier for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(2):389–393

    Article  Google Scholar 

  46. Xiong M, Ran Q, Li W, Zou J, Du Q (2015) Hyperspectral image classification using weighted joint collaborative representation. IEEE Geosci Remote Sens Lett 12(6):1209–1213

    Article  Google Scholar 

  47. Li Z, Tang J, Mei T (2018) Deep collaborative embedding for social image understanding. IEEE Trans Pattern Anal Mach Intell 41(9):2070–2083

    Article  Google Scholar 

  48. Song G, Chai W (2018) Collaborative learning for deep neural networks. In: Advances in neural information processing systems, in proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS). December 2018, pp 1837–1846

  49. Fang S, Lin T (2021) Intra-model collaborative learning of neural networks. In: 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1–7. https://doi.org/10.1109/IJCNN52387.2021.9533324

  50. Ma X, Wang H, Geng J (2016) Spectral-spatial classification of hyperspectral image based on deep auto-encoder. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):4073–4085

    Article  Google Scholar 

  51. Guo H, Liu J, Yang J, Xiao Z, Wu Z (2020) Deep collaborative attention network for hyperspectral image classification by combining 2-d cnn and 3-d cnn. IEEE J Sel Top Appl Earth Observ Remote Sens 13:4789–4802

    Article  Google Scholar 

  52. Essa E, Xie X (2021) Deep collaborative learning for randomly wired neural networks. Electronics 10(14):1669

    Article  Google Scholar 

  53. Zhou Y, Li X, Zhou Y, Wang Y, Hu Q, Wang W (2022) Deep collaborative multi-task network: a human decision process inspired model for hierarchical image classification. Pattern Recognit 124:108449

    Article  Google Scholar 

  54. Yu C, Han R, Song M, Liu C, Chang C-I (2020) A simplified 2d–3d cnn architecture for hyperspectral image classification based on spatial-spectral fusion. IEEE J Sel Top Appl Earth Observ Remote Sens 13:2485–2501

    Article  Google Scholar 

  55. Yang X, Ye Y, Li X, Lau RY, Zhang X, Huang X (2018) Hyperspectral image classification with deep learning models. IEEE Trans Geosci Remote Sens 56(9):5408–5423

    Article  Google Scholar 

  56. Zhang M, Li W, Du Q (2018) Diverse region-based cnn for hyperspectral image classification. IEEE Trans Image Process 27(6):2623–2634

    Article  MathSciNet  MATH  Google Scholar 

  57. Ding S, Chen L (2009) Classification of hyperspectral remote sensing images with support vector machines and particle swarm optimization. In: 2009 International Conference on information engineering and computer science, IEEE, pp 1–5. https://doi.org/10.1109/ICIECS.2009.5363456

  58. Li W, Tramel EW, Prasad S, Fowler JE (2013) Nearest regularized subspace for hyperspectral classification. IEEE Trans Geosci Remote Sens 52(1):477–489

    Article  Google Scholar 

  59. Zhao Z, Hu D, Wang H, Yu X (2021) Center attention network for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens 14:3415–3425

    Article  Google Scholar 

  60. Camps-Valls G, Gomez-Chova L, Muñoz-Marí J, Vila-Francés J, Calpe-Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Article  Google Scholar 

  61. Fang L, Li S, Duan W, Ren J, Benediktsson JA (2015) Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels. IEEE Trans Geosci Remote Sens 53(12):6663–6674

    Article  Google Scholar 

  62. Zhou C, Tu B, Ren Q, Chen S (2021) Spatial peak-aware collaborative representation for hyperspectral imagery classification. IEEE Geosci Remote Sens Lett 19:1–5

Download references

Funding

The work was funded by Natural Science Foundation of China to Haifeng Sima with grant number 61602157, Science and Technology Department of Henan Province with grant number 202102210167, and by Doctoral Foundation under Grant B2016-37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junding Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sima, H., Gao, F., Zhang, Y. et al. Collaborative optimization of spatial-spectrum parallel convolutional network (CO-PCN) for hyperspectral image classification. Int. J. Mach. Learn. & Cyber. 14, 2353–2366 (2023). https://doi.org/10.1007/s13042-022-01767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-022-01767-5

Keywords