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Abstract
Probabilistic error/loss performance evaluation instruments that are originally used for regression and time series forecast-
ing are also applied in some binary-class or multi-class classifiers, such as artificial neural networks. This study aims to 
systematically assess probabilistic instruments for binary classification performance evaluation using a proposed two-stage 
benchmarking method called BenchMetrics Prob. The method employs five criteria and fourteen simulation cases based on 
hypothetical classifiers on synthetic datasets. The goal is to reveal specific weaknesses of performance instruments and to 
identify the most robust instrument in binary classification problems. The BenchMetrics Prob method was tested on 31 instru-
ment/instrument variants, and the results have identified four instruments as the most robust in a binary classification context: 
Sum Squared Error (SSE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE, as the variant of MSE), and Mean 
Absolute Error (MAE). As SSE has lower interpretability due to its [0, ∞) range, MAE in [0, 1] is the most convenient and 
robust probabilistic metric for generic purposes. In classification problems where large errors are more important than small 
errors, RMSE may be a better choice. Additionally, the results showed that instrument variants with summarization functions 
other than mean (e.g., median and geometric mean), LogLoss, and the error instruments with relative/percentage/symmetric-
percentage subtypes for regression, such as Mean Absolute Percentage Error (MAPE), Symmetric MAPE (sMAPE), and 
Mean Relative Absolute Error (MRAE), were less robust and should be avoided. These findings suggest that researchers 
should employ robust probabilistic metrics when measuring and reporting performance in binary classification problems.

Keywords Performance measures · Probabilistic error/loss · Squared error · Binary classification · Regression · Time series 
forecasting

1 Introduction

Performance evaluation instruments are used to assess, 
compare, and publish a classifier’s categorization or labe-
ling success in training, validation, and test datasets. Several 
instruments have been proposed and used in the literature. 
Researchers rely on existing practices and prefer one or a few 
conventional instruments for performance evaluation [1]. 
Apart from well-known confusion-matrix-derived perfor-
mance evaluation instruments (e.g., accuracy and F1), sev-
eral probabilistic error/loss instruments have been defined 
and used for different machine learning algorithms in various 
applications in the literature [1, 2]. Those error instruments, 

such as Mean Absolute Error (MAE, also known as “Mean 
Absolute Deviation” (MAD), “L1 loss” or “L1-norm”), MSE 
(Mean Squared Error, also known as “Brier score”, “L2 
loss” or “L2-norm”), and Root Mean Square Error (RMSE, 
also known as Root Mean Square Deviation, RMSD) [3–5], 
summarize the error values calculated for.

• Regression (e.g., support vector regression [6]),
• Time series forecasting (e.g., stock market forecast-

ing [7], movie box office prediction [8], prediction of 
future [9] or ongoing epidemic events including COVID-
19 [10], temperature distribution prediction in snap-cur-
ing ovens [11], and multivariate macroeconomic time 
series prediction [12]),

• Partly binary-class or multi-class classification applica-
tions (e.g., multiple-category water quality classifica-
tion [13], multi-class intrusion detection [14]), and

• Extreme machine learning applications recently [15].
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Probabilistic error/loss instruments, either alone or 
combined with confusion-matrix-derived instruments, are 
used to evaluate, publish, and compare classification per-
formances in a wide variety of applications in existing 
and emerging fields, such as backpropagation neural net-
works [16, 17], monotonic classifications where predictive 
models should be monotonic [18], machine fault classifica-
tion from vibration data [19], meteor detection in camera 
data [20], carp species identification from fish images [21] 
with convolutional neural networks, and groundwater level 
prediction from wells data with ensemble deep learning [22]. 
Researchers compare their predictions with other algorithms 
using multiple error/loss instruments (e.g., comparing recur-
rent neural networks’ performance via MAE, Mean Absolute 
Percentage Error (MAPE), and RMSE [23]). Other alterna-
tive examples that were published in the literature are pro-
vided in Sect. 4.

It is important to note that performance evaluation 
instruments are essential for ranking and comparing 
alternative classification methods such as feature selec-
tion, machine learning algorithm selection, and model 
tuning, in order to provide guidance on which method 
is the best. In this article, the term ‘performance instru-
ment’ or ‘instrument’ is used as a generic term that is 
interchangeable with other terms used in the literature, 
such as ‘performance measure’ or ‘performance metric’. 
This distinction is described in more detail in previous 
work [24]. Previous experiments with probabilistic error 
instruments have shown that there is a low correlation 
between the ranks generated by different instruments, 
indicating that different instruments may indicate differ-
ent classifications as the best [25]. In many application 
domains, the choice of performance instrument becomes 
a convention that is followed in consecutive studies and 
may even be carried over to new domains without any 
additional evaluation. As a result, selecting instruments 
for emerging fields or interdisciplinary problem domains 
may be challenging. For example, in the rapidly growing 
field of deep learning, researchers lack clear guidelines for 
selecting a performance instrument, leading to the publi-
cation and evaluation of several alternatives, including the 
recent or rarely used ones [20].

Systematical assessment of the robustness of probabil-
istic error/loss instruments in the classification context is 
lacking in the literature. It is not appropriate to use proba-
bilistic instruments developed for regression problems as 
they are in classification evaluations. Researchers often 
do not recognize the limitations of probabilistic instru-
ments, especially in binary classification evaluations. This 
study proposes a benchmarking method, called Bench-
Metrics Prob (Benchmarking of Metrics for Probabilistic 
instruments) to evaluate the robustness of probabilistic 
error instruments. The study first reviews and describes 

categories of classification performance evaluation instru-
ments and assesses the robustness of probabilistic error 
instruments using hypothetical classifiers on synthetic 
datasets across seven simulation cases and fourteen sub-
cases (Stage 1). In addition to this quantitative evalua-
tion, a qualitative approach (Stage 2) with five criteria is 
proposed. As discussed in Sect. 4, there are few studies 
that provide high-level qualitative requirements for regres-
sion problems, not for classification problems. BenchMet-
rics Prob is an initial effort to create a theoretical model 
through the proposed quantitative criteria and a set of 
robustness principles through the qualitative criteria to 
compare the probabilistic performance instruments. The 
proposed benchmarking method can also be extended or 
compared through expert evaluations of the instruments 
in real-world problems in various or specific classification 
domains.

The evaluation of 31 instruments and instrument vari-
ants via BenchMetrics Prob has shown that some instru-
ments should not be preferred in the performance evalu-
ation of binary classification applications, or they should 
be used with knowledge of their limitations reported in 
this study. Therefore, this study recommends instruments 
from a large number of alternatives originally proposed 
for regression or time series forecasting to ensure that per-
formance evaluation is in the context of binary classifica-
tion. As an additional contribution, the study also suggests 
categorizing performance instruments as main and vari-
ants, making it easier to analyze and evaluate numerous 
instruments.

BenchMetrics Prob is a new study that complements 
and extends BenchMetrics, a benchmarking method pro-
posed in the author’s previous work [26]. BenchMetrics 
evaluated and compared thirteen confusion-matrix-derived 
metrics, along with two recently proposed metrics (opti-
mized precision and index of balanced accuracy for G): 
True Positive Rate (TPR), True Negative Rate (TNR), 
Positive Predictive Value (PPV), Negative Predictive 
Value (NPV), Accuracy (ACC ), Informedness (INFORM), 
Markedness (MARK), Balanced Accuracy (BACC ), G, 
Normalized Mutual Information (nMI), F1, Cohen’s 
Kappa (CK) [27], and Mathews Correlation Coefficient 
(MCC) [28]. BenchMetrics identified the weak and robust 
issues of individual confusion-matrix-derived metrics, 
ultimately finding that MCC is the most robust. Bench-
Metrics Prob, on the other hand, focuses on evaluating the 
robustness of probabilistic error/loss instruments specifi-
cally in a classification context.

The rest of the paper is structured as follows. Section 2 
presents a different approach to describing three catego-
ries of binary classification performance evaluation instru-
ments and their properties. Section 3 provides an overview 
of probabilistic error/loss instruments being evaluation in 
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this study. Section 4 examines the literature on evaluating 
probabilistic instruments from regression or classification 
contexts. Section 5 describes the proposed benchmark-
ing method (BenchMetrics Prob) comprising two stages. 
This section explains the proposed qualitative criteria in 
Stage 1 and quantitative cases generated by a tool devel-
oped to analyze instruments quantitatively in Stage 2. The 
overall benchmarking results with instrument robustness 
rankings are provided in Sect. 6. Section 7 discusses the 
study in general, its limitations, and future work. The con-
clusions are outlined in Sect. 8. Appendix A gives pre-
liminaries for classification and performance evaluation. 
Appendix B contains the equations of probabilistic error/
loss instruments in distinct notation, organized by com-
mon error functions. Appendix C provides the distribution 
of aggregation and error functions of probabilistic error 
instruments. The BenchMetrics Prob instrument calculator 
and simulation tool are introduced in Appendix D, along 
with its graphical user interface, and basic usages.

Benchmarking tool and online material
This study provides a calculator/simulation tool for prob-

abilistic error/loss instruments at https:// github. com/ gurol/ 
Bench Metri csProb. Users can use the tool to reproduce the 

controlled cases for hypothetical classifiers on synthetic 
datasets, which is used in Stage 2 quantitative benchmark-
ing. It is possible to generate new simulation cases. The tool 
and results are provided as Microsoft® Excel® spreadsheet 
files (BenchMetricsProb_SimulationTool.xlsx and Bench-
MetricsProb_SimulationCasesResults.xlsx).

2  Binary classification performance 
evaluation instrument categories

Table 1 describes and compares three categories of perfor-
mance evaluation instruments: confusion-matrix-derived, 
graphical-based, and probabilistic error/loss instruments. 
The categories are distinguished by three pillars of insights 
suggested in this study: “whether an instrument represents 
the internal vs. external performance of a classifier, rep-
resenting potential vs. kinetic aspects of its classification 
model,” and “whether it is used during classifier model 
development or to declare the final performance of a clas-
sifier in production.” These are summarized in the fourth 
column of Table 1’s. Confusion-matrix-derived and graph-
ical-based instruments are described in Appendix A.1 and 
Appendix A.2, respectively.

Table 1  Performance evaluation instrument categories and attributes

Instrument type Derived from Classifier threshold (θ) Performance insights

Confusion-matrix-derived M(TP,FP,FN,TN) Single/final External, kinetic, production
Graphical-based ∑1

�=0
M1θΔM2θ

Multiple Internal, potential, development

Probabilistic error/loss Loss: LogLoss
(See Equation (B37))
Error:
g

i=1..��

ei(ci, pi)

Single/final Internal, kinetic, development/production

M A 4-ary summary function (performance metric)
e.g., ACC  = (TP + TN)/(TP + FP + FN + TN))
where ACC : Accuracy metric,
TP: True Positive, FP: False Positive, FN: False Negative, and TN: True Negative)

M1, M2 Two trade-off confusion-matrix-derived performance metrics
e.g., TPR vs. 1 − TNR where TPR: True Positive Rate and TNR: True Negative Rate

∑1

�=0
yΔx Area-under-curve (θ: design threshold value in [0, 1] interval)

x: 1 – TNR (or FPR) and y: TPR with AUCROC
(Area-under-ROC-curve, ROC: receiver-operating-characteristic)
x: TPR and y: PPV with AUCPR (area-under-precision-recall-curve where PPV: Positive Predictive Value or preci-

sion and TPR: True Positive Rate or recall)
Mθ A metric value for a classifier model having a specific θ (design) threshold value
i An instance to be classified
Sn Sample size
ci The class value (ground truth) of an instance (0: negative, 1: positive in binary classification)
pi The label score (prediction) in [0, 1] for a classified instance with a θ (decision) threshold value in (0, 1) interval, 

e.g., 0.5
ei Error function for the instance (see Table 10 for examples)
g Aggregation function for all error values (e.g., arithmetic mean, see Table 10 for examples)

https://github.com/gurol/BenchMetricsProb
https://github.com/gurol/BenchMetricsProb
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2.1  Probabilistic error/loss instruments in binary 
classification

Graphical-based instruments and probabilistic error/loss 
instruments, such as MSE or LogLoss, do not depend on 
a confusion matrix. However, unlike graphical ones, they 
do not depict the performance of multiple design thresh-
olds. They summarize deviations from the true probability 
or prediction uncertainty of a classifier that is modeled with 
a single/final design threshold [29]. Although probabilistic 
error/loss instruments are preferred for regression rather 
than classification problems, or for multi-class rather than 
binary classification, they can be reported in binary classifi-
cation (e.g., neural network classification models), usually 
with one or more confusion-matrix-derived metrics. A prob-
abilistic instrument is a “reliability metric” [1, 30] instead of 
a “performance metric”. Probabilistic instruments provide 
insight for a single classification application, like confusion-
matrix-derived instruments. However, they can be used to 
assess a classifier’s production performance and optimize 
model development. A 3D surface plot, for example, can dis-
play MSE with two dependent variables to visualize internal 
design variations [31] (see Fig. 10 in the referenced study). 
Likewise, RMSE is used to compare the kernels that will 
result in smooth functions for the classifier boundary and 
regression functions [32]. A probabilistic instrument (e.g., 
RMSE) can be used for a classifier producing a continuous 
outcome, whereas a confusion-matrix-derived instrument 
(e.g., ACC ) can also be reported for the classifier evaluated 
according to binary outcome [33].

Contrary to zero–one loss metrics (e.g., MCR: Misclassi-
fication Rate, FPR: False Positive Rate, FNR: False Negative 
Rate, FDR: False Discovery Rate, and FOR: False Omis-
sion Rate), probabilistic error/loss instruments assess the 
performance error of scoring or soft (non-crisp) classifiers 
that label instances with a reported or attached belief value 
(score, probability or likelihood) based on a decision bound-
ary. For example, instead of hard labeling with zero (0) or 
one (1), a binary classifier model with a Θ = 0.50 internal 
decision boundary value (the right side is for positive labels, 
the left side is for negative ones) in [0, 1] interval can cor-
rectly label a positive ith instance (ci = 1) as positive with a 
pi = 0.85 score (also known as “soft label”) instead of the 
highest belief value where pi = 1. In soft classification, a 
sample can be labeled with partial membership (positive 
with pi = 0.85 and negative with pi = 1 – 0.85 = 0.15). For 
another (jth) instance with a true negative label (cj = 0), 
the classifier assigns a score of pj = 0.40 instead of pj = 0. 
As a result, the probabilistic classification error (ej) can 
be interpreted as a distance function for those instances 
where the classifier’s soft labeling is more uncertain (|0.85 
– 0.50|= 0.35 for the positive ith instance, compared to 

0.10 =|0.40 – 0.50| for the negative jth instance) relative to 
the decision boundary (Θ = 0.5).

Probabilistic metrics such as MAE, MSE, and RMSE are 
often expressed in a right-open interval [0, ∞) in regression, 
but they become bound by the range of the dependent vari-
able (e.g., [0, 1] in a binary classification). For example, in a 
comparison between a binary classification and a regression 
model predicting weather temperatures on Earth (ranging 
from ± 40 °C or 100 °F to − 40 °F), binary scoring classifiers 
produce absolute errors ranging from 0 and 1 for the “cold” 
(0) and “hot” (1) labels. For each ith example: class ci is 
either 0 “cold” or 1 “hot” (ci ∈ {0, 1}) and the corresponding 
prediction value pi is between 0 and 1 (pi ∈ [0, 1]). Regres-
sion classifiers, on the other hand, produce absolute errors 
ranging from 0 °C/°F to 80 °C (140 °F). A threshold like 
20 °C/68 °F can be used to categorize the scalar outcomes 
into “cold” and “hot” labels. While Mean Relative Absolute 
Error (MRAE) and LogLoss also measure classification error, 
their summary functions yield a right-open interval in both 
binary classification and regression. However, interpreting 
probabilistic performance instruments can be challenging, 
especially when compared to well-known confusion-matrix-
derived metrics according to some practitioners [34].

2.2  A general overview of instrument categories

As a toy example, let us consider a classifier that is modeled 
with a specific design threshold, which yields the following 
confusion matrix elements for a test dataset of size Sn = 20: 
TP = 10, FP = 0, FN = 0, and TN = 10 (number of True/False 
Positives/Negatives). In this best-performance case scenario 
where the classifier has correctly classified all instances in 
the dataset:

• Confusion-matrix-derived metrics produce the maximum 
value (e.g., TPR = TNR = PPV = NPV = ACC  = F1 = CK = 
MCC = 1), whereas loss instruments produce the mini-
mum value (e.g., FNR = FPR = FDR = FOR = MCR = 0).

• A probabilistic error/loss instrument, such as MAE, could 
most likely be any value in [0, 0.5)1 (ideally close to zero, 
but the possible range is in [0, 1]).

• A graphical-based metric such as AUCROC (Area-Under-
Receiver-Operating-Characteristic-Curve) yields any 
value in [0, 1] interval (ideally close to 1), indicating 
that the classifier has a perfect trade-off between TPR 
and FPR, independent of the current classification result 

1 For ten negative samples (e.g., i = 1,  …,  10): ci = 0 and example 
pi = 0.49 then |  ci – pi  |= 0.49. For remaining ten positive samples 
(e.g., i = 11, …, 20): ci = 1 and example pi = 0.51 then | ci – pi |= 0.49. 
Hence, MAE = 0.49.
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represented by confusion-matrix-derived and/or proba-
bilistic instruments.

AUCROC measures the ability of a binary classifier to 
discriminate between positive and negative classes across 
all possible thresholds. A value of 0.90 indicates that the 
classifier is performing well in this regard, with a high true 
positive rate and a low false positive rate. On the other 
hand, the ACC  and MSE are instruments that measure the 
overall performance of the classifier at a specific decision 
threshold. An ACC  of 0.95 indicates that the classifier is 
correctly classifying 95% of the instances, while an MSE 
of 0.20 indicates that, on average, the difference between 
the predicted probabilities and actual labels is 0.20. It is 
important to note that the ideal threshold for a classifier 
depends on the specific problem and domain. Therefore, 
a high AUCROC score does not necessarily guarantee an 
ideal threshold, as different thresholds can produce differ-
ent results for other metrics such as ACC  and MSE.

Although confusion-matrix-derived and probabilis-
tic error/loss instruments are not directly associated, the 
former can be expressed in terms of expected values for-
mulated by the expected values of confusion-matrix ele-
ments ( �(TP),�(FP),�(FN), and �(TN))  [35]. For exam-
ple, �(ACC),�(TPR), or �(F1) , where �(I) denotes the 
expected value of an instrument I, can be expressed with 
these expected values. Although this study does not cover 
the performance evaluation of multi-class/multi-labeled 
classification [36–38], binary classification evaluation met-
rics can be adapted for such cases. This can be achieved by 
micro- or macro-averaging binary metrics over time [39, 40] 
or by making specific adaptations such as the one-versus-all 
approach [37, 38, 41].

3  Probabilistic error/loss performance 
evaluation instruments

Figure 1 illustrates a probabilistic-based classification sce-
nario for a sample size of Sn = 4, where the true scores are 
ci = [1, 0, 1, 0] and the prediction scores are pi = [0.8, 0.6, 
0.4, 0.2] for the ith example. The labels for each example are 
determined based on a decision boundary, which is the line 
or surface that separates different classes in a classification 
problem. The decision boundary in probabilistic-based clas-
sifiers is determined by the probability threshold used to 
classify a given input and can be linear or non-linear depend-
ing on the classifier used. The classifier assigns labels to 
the four examples based on their pi scores using a 0.5 linear 
decision boundary, resulting in the following classification:

• c1 = 1 (“positive”) is classified as “positive” with 
p1 = 0.8 ≥ 0.5 (true positive),

• c2 = 0 (“negative”) is classified as “positive” with 
p2 = 0.6 ≥ 0.5 (false positive),

• c3 = 1 (“positive”) is classified as “negative” with 
p3 = 0.4 < 0.5 (false negative), and

• c4 = 0 (“negative”) is classified as “negative” with 
p4 = 0.2 < 0.5 (true negative).

As a minimal complete example, the entire classification 
results can be summarized as TP = 1, FP = 1, FN = 1, and 
TN = 1, representing all four possible outcomes of a binary 
classifier. There are two categories of probabilistic perfor-
mance instruments: probabilistic loss and probabilistic error 
instruments. LogLoss (also known as “binary cross-entropy” 
in binary-class classification and “categorical cross-entropy” 
(CCE) in multi-class classification) is a well-known and 
widely used instrument in probabilistic loss instrument, 
while there are numerous probabilistic error instruments. For 
the example in Fig. 1, LogLoss can be calculated as follows:

1 (“P”)  log20.8 =  log20.8 = –0.32 for i = 1
(1 – 0 (“N”))  log2 (1 – 0.6) = –1.32 for i = 2
1 (“P”)  log20.4 =  log20.4 = –1.32 for i = 3
(1 – 0 (“N”))  log2 (1 – 0.2) = –0.32 for i = 4

The error function, in its purest form, for the ith instance 
or example is given by ei = ci – pi. Mean Error (ME)2 is the 
arithmetic mean of errors for all sample instances. For the 
sake of simplicity, MAE is used in the following example 
calculation for probabilistic error instruments.

|1 (“P”) – 0.8| = 0.2 for i = 1
|0 (“N”) – 0.6| = 0.6 for i = 2
|1 (“P”) – 0.4| = 0.4 for i = 3
|0 (“N”) – 0.2| = 0.2 for i = 4

Probabilistic error/loss instruments provide sufficient 
information for evaluating a classifier’s internal perfor-
mance during model development. However, during produc-
tion or validation/testing, a probabilistic instrument value 
should be evaluated and published with at least one confu-
sion-matrix-derived instrument (e.g., MSE with ACC  [42], 
MAE with ACC  [43], and MAE with F1 [44], LogLoss with 
ACC  and F1 [20]). This allows for a more comprehensive 

LogLoss = −
1

Sn

Sn∑

i

ci log2pi +
(
1 − ci

)
log2(1 − pi)

= −
1

4
(−0.32 − 1.32 − 1.32 − 0.32) = 0.82.

MAE =
1

Sn

Sn∑

i

||ci − pi
|| =

1

2
(0.2 + 0.6 + 0.4 + 0.2) = 0.35.

2 Also known as Measurement Error, Observational Error, or Mean 
Bias Error (MBE).
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interpretation of the classification performance. Publishing 
both ACC  and MSE values (e.g., ACC  = 0.99 and MSE = 0.40) 
is more informative than publishing only the ACC  value (e.g., 
ACC  = 0.99). When two classifiers have the same accuracy, 
the one with the lower MSE is considered to be the better per-
former. Conversely, when two classifiers have the same MSE, 
the one with the higher ACC  is considered to perform bet-
ter. In some applications, such as recommender systems, the 
combination of confusion-matrix-derived and probabilistic 
instruments is used for specific purposes. For example, in, the 
quality of usage predictions is evaluated by confusion-matrix-
derived instruments, whereas rating prediction calculation is 
evaluated by probabilistic instruments [45]. Finally, publish-
ing all three instrument categories (e.g., ACC , AUCROC, and 
RMSE [46]) ensures completeness. It is important to note that 
there is no correlation between classification results obtained 
using confusion-matrix-derived and probabilistic instruments, 
as reported in the simulations in Subsection 5.2.2. Probabilis-
tic instruments can be higher or lower than maximum/mini-
mum FPR, FNR, FDR, FOR, and MCR.

4  Related works

In addition to LogLoss, which is a standard probabilistic 
loss instrument, various probabilistic error instruments have 
been defined and utilized for regression, time series forecast-
ing, and partly classification applications [47]. Armstrong 
conducted a comprehensive evaluation of these instruments 
from a regression standpoint, which is summarized in the 
following paragraph [25]. Recently, Botchkarev empha-
sized the critical role of instruments in the decision-making 
process for selecting optimal machine learning algorithms. 

He conducted a literature review of over 80 papers, catego-
rized instruments as “primary”, “extended”, “composite”, 
and “hybrid”, reviewed 40 “primary” probabilistic error 
instruments, and compiled their generic components [47]. 
According to this recent review, there are few qualitative 
assessments with varying instruments that are either recom-
mended or not recommended in the literature.

Armstrong discussed the following rationales for exam-
ining the instruments (“error measures”) from a regression 
standpoint [25]:

• “Ensure that error measures are valid”: The instruments 
should show agreement across applications, which 
can be measured using correlation. This rationale is 
addressed in the Discussion section below.

• “Avoid error measures with high sensitivity to the 
degree of difficulty”: This rationale is specific to fore-
casting applications and is related to the difficulty (i.e. 
volatility) of baseline models other than the model 
under evaluation.

• “Avoid high sensitivity to outliers”: When outliers are 
not of primary interest, they should be eliminated in 
error values (e) either by pre-processing or by using 
other proper aggregation functions (g) such as using 
median instead of mean.

• “Avoid biased error measures”: This rationale is 
addressed in Case 1 (over/under-predictions) in this 
study.

• “Ensure that scale does not affect error measures”: This 
rationale is addressed separately in the “scale invari-
ance” subheading below.

Aside from those rationales, Armstrong provided some 
recommendations that should also be considered when 
selecting a probabilistic instrument for binary classifica-
tion performance evaluation:

• “Do not use RMSE for comparisons across series”: 
Squaring errors were used in critical fields such as 
economics, where large errors could have serious con-
sequences. Nevertheless, this is normally not required 
in the regression (or classification) context. Moreover, 
the reliability of RMSE as performance instrument 
decreases when data contain erroneous values or out-
liers.

• “Use multiple error measures”: Researchers should 
make decisions based on the results of multiple relevant 
instruments.

Hyndman and Koehler highlighted the following addi-
tional conditions also specific to regression or time series 
forecasting [48]:

FP

FN

TN

TP

0 1 0.5

p 1 = 0.8 

p 3 = 0.4 

p 2 = 0.6 

p 4 = 0.2 

i = 1 

i = 2 

i = 3 

i = 4 

Decision Boundary (threshold) 

e.g. , p i >= 0.5 ⇒ “OP” 

c 1 = 1 ( “P” ) 

c 2 = 0 (“N”) 

c 3 = 1 (“P”) 

c 4 = 0 (“N”)

1 − p 1 = 0.2 

1 − p 3 = 0.6 

1 − p 2 = 0.4

1 − p 4 = 0.8
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“N”
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u
n

d
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Fig. 1  Examples predicted by a probabilistic-based classifier with 
a decision boundary (e.g., 0.5) (“P”: Positive, “N”: Negative, “OP”: 
Outcome Positive, “ON”: Outcome Negative)
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• Avoid using instruments that produce zero on data 
where zero is meaningless (such as temperature fore-
casting on the Fahrenheit or Celsius scales)

• Avoid using instruments that measure errors on data 
having many zero values, such as intermittent demand 
data in economics.

The literature has also focused on investigating the 
robustness of specific instruments, especially those that 
have recently been proposed. For instance, Tofallis examined 
MAPE, which is a widely used instrument for evaluating pre-
diction models in various fields, including software project 
estimation [49]. He showed that MAPE is a biased instru-
ment due to its asymmetric characteristics (i.e. MAPE(p, 
c) and MAPE(c, p) produce different results). The use of 
MAPE favors a regression model with under-predictions. To 
overcome such biases in regression or time series forecast-
ing, SMAPE, which is a symmetric version of MAPE, has 
been proposed [50].

However, there is a lack of research on the suitability 
of these instruments specifically for binary classification 
performance evaluation. Flach recommended MSE over 
MAE due to the calibration/expected loss properties and 
the higher value of MAE [51]. Kline and Berardi conducted 
a small experimental comparison that depends on sample 
size, neural network classifier models, and model complexity 
parameters such as the number of layers, and hidden nodes. 
Based on example datasets having 540 and 180 objects, they 
discovered that LogLoss outperformed SSE (also known as 
Residual Sum of Squares, RSS) for training [52]. Other stud-
ies have investigated the effect of noise in datasets on neu-
ral network loss functions, which are typically measured by 
MSE or LogLoss. An empirical study of deep neural network 
multi-class classifiers trained on six benchmark datasets with 
varying noise levels revealed that MAE is more robust than 
Categorical Cross-Entropy (CCE, LogLoss in multi-class 
classification) and MSE [53]. Kumar and Sastry proposed 
a parameterized version of LogLoss as a robust alternative 
and published empirical results that contradicted the previ-
ous empirical study’s findings [54]. These studies mostly 
focus on differentiating between probabilistic loss instru-
ments, specifically LogLoss, and a few probabilistic error 
instruments such as MSE, MAE, or RMSE.

The literature primarily focuses on probabilistic error 
instruments in the context of regression or time series fore-
casting, but using such instruments in classification applica-
tions involves different rationales. While the expected prop-
erties of these instruments have been extensively discussed, 
there is a lack of methodology for analyzing them from 
both qualitative and especially quantitative perspectives, as 
noted by Botchkarev [47]. To address this gap, BenchMet-
rics Prob offers a systematic approach that can be applied 
not only to classification but also to regression and time 

series forecasting. This study provides a tool to facilitate the 
benchmarking process.

4.1  Previous works

It is clear that the proposed method, BenchMetrics Prob, 
is distinct from the author’s previous works on perfor-
mance evaluation. In [55], only confusion-matrix-derived 
binary classification instruments and their properties were 
reviewed, while in [24], the authors reviewed 69 instru-
ments, including confusion-matrix-derived, graphical-based, 
and some probabilistic error instruments. The authors also 
proposed new formal concepts to identify characteristics 
and similarities and also developed a new exploratory table 
called PToPI (Periodic Table of Performance Instruments) 
to visualize the instruments similar to the periodic table 
of elements. In [26], the authors proposed a benchmark-
ing method, BenchMetrics, to assess the robustness of 15 
confusion-matrix-derived instruments, which is unrelated 
to probabilistic instruments. Thus, this article’s proposed 
method is novel and distinct, benchmarking 31 probabilistic 
instruments.

5  BenchMetrics Prob: a proposed 
method for probabilistic error/loss 
performance‑metrics benchmarking

This section describes the proposed benchmarking method 
comprising two stages: qualitative (Stage 1) and quantita-
tive (Stage 2) evaluation, each of which is described in the 
following subsections. Stage 1 consists of five qualitative 
criteria and Stage 2 includes seven quantitative simulation 
cases. Besides describing the criteria and cases, the results 
of BenchMetrics Prob conducted on reviewed instruments 
are also provided. Section 6 provides the overall result of the 
tested method in terms of a final robustness ranking among 
all instruments.

5.1  Stage 1: proposed qualitative evaluation

This subsection introduces the five qualitative evaluation cri-
teria proposed for assessing instruments in the classification 
context. Qualitative evaluation reveals the criteria to devalue 
the instruments that are appropriate only for regression and 
time-series performance evaluation. This is crucial because 
there are many existing instruments with different theoretical 
foundations. The proposed criteria can assist in selecting the 
most appropriate instrument for binary classification tasks. 
Furthermore, qualitative criteria can identify inconsisten-
cies in instrument ranges, mathematical losses, and unde-
fined outputs resulting from the instrument equation. These 
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issues severely limit the instruments’ quality, robustness, and 
practicality.

5.1.1  Criterion 1: no interdependency in error functions

Scaled instruments, such as Mean Absolute Scaled Error 
(MASE), Median Absolute Scaled Error (MdASE), and Root 
Mean Squared Scaled Error (RMSSE), require two subse-
quent instances in their summary function (e.g., ||ci − ci−1

|| 
where i = 2, …, Sn). They are commonly used for evaluat-
ing time series regressions and forecasting problems with a 
sequential characteristic. However, these instruments are not 
applicable in binary classification problems where the sam-
ple ordering is arbitrary and irrelevant. Because this study 
specifically focuses on binary-class performance evaluation, 
the inapplicability of scaled instruments is a dominant crite-
rion, and they are excluded from further evaluations.

5.1.2  Criterion 2: scale invariance

In regression, instrument values are based on the scale of the 
dependent variable (y), resulting in the same range of values 
(i.e. according to the range of y) for different models applied 
to the same dataset. However, instruments may exhibit vari-
ance when applied to datasets with different scales of the 
dependent variable (e.g., y1 in [0, 1] versus y2 in [0, 100]). 
Most commonly used instruments, such as MSE, RMSE, 
MAE, and MdAE (Median Absolute Error), are not scale-
invariant, as they are based on the scale of the dependent 
variable. Subtypes of squared and absolute instruments are 
proposed to avoid this variance [48]. However, in binary 
classification problems with two discrete values (c ∈ {0, 1}), 
all instruments are scale-invariant by definition. Because of 
the fixed dependent variable interval. Therefore, this cri-
terion is not relevant for binary classification instruments.

5.1.3  Criterion 3: error/loss information preservation

Performance instruments, whether used in regression or 
classification, should not cause any information loss when 
aggregating the error values into a single value. Loss of 
information can occur when positive and negative errors 
cancel each other out. Certain error functions (e) when 
used with incapable aggregation functions (g) can cause 
this loss. For instance, Mean Error (ME) and Mean Percent-
age Error (MPE) are the instruments that combine the plain 
error (ei = ci – pi) with positive and negative signs. Sum-
ming those signed errors can diminish the errors, leading to 
an instrument that yields 0 when the totals of negative and 
positive errors are the same. Due to this limitation, these two 
instruments, which also have a very low level of robustness 
ranking in BenchMetrics Prob, become practically useless. 
To avoid this issue, the errors are post-processed by taking 

absolute values or squaring the values to avoid negative val-
ues before applying an aggregation function (g).

5.1.4  Criterion 4: valid outputs

Probabilistic performance instruments can produce invalid 
or undefined results due to division-by-zero errors. In regres-
sion, this may not be a common occurrence, but it should be 
considered in classification cases where both the class (c) 
and prediction (p) values are zero. There are two conditions 
in which instruments produce division-by-zero errors:

The first is in implausible cases, where certain instru-
ments produce division-by-zero errors on datasets with spe-
cific characteristics:

• nMSE v1 and nMSE v4 on datasets with no positive-class 
examples (ci = 0 only):

• nMSE v2 on datasets with only single-class examples 
(ci = 0 or 1 only, hence, variance = 0)

• nMSE v3 on datasets with only single-class examples 
(ci = 0 or 1 only, hence, the difference from the mean 
class value is zero)

• nMSE v5 on datasets with at least one negative-class 
example (ci ∈ {0} ∨ ci ∈ {0, 1})

The second is in plausible cases, where certain instru-
ments produce division-by-zero errors (please refer to 
Table 11 for instrument name abbreviations):

• The instruments with percentage subtypes (MPE, MAPE, 
MdAPE, RMSPE, and RMdSPE) on datasets with at least 
one instance of the negative class (ci = 0)

• The instruments with symmetric-percentage subtypes 
(sMAPE, nsMAPE, and nsMdAPE) on datasets with at 
least one instance of the negative class with 0 output 
(ci = 0 and pi = 0)

• The instruments with scaled subtyped (MASE, MdASE, 
and RMSSE) onn datasets with a single-class only (ci = 0 
or 1 only, hence, difference = 0).

5.1.5  Criterion 5: parametric symmetry (c ↔ p)

This is informative in the classification context and indi-
cates whether switching the c and p parameters in an instru-
ment’s equation makes it equal to itself. Note that Case 1, 
which describes balanced over/under-prediction in Stage 2, 
is sometimes called “unsymmetrical” in the literature, 
hence the inclusion of the term ‘parametric’ to distinguish 
the rationale. Upon examining the equations, squared error 
(except nMSE v2 – v4), absolute, and symmetric percent-
age subtyped instruments are parametrically symmetric 
instruments.
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5.2  Stage 2: proposed quantitative evaluation 
via simulation cases

This subsection describes Stage 2 benchmarking, which 
involves proposed quantitative evaluation through simu-
lation cases to rank the robustness of probabilistic error 
instruments in meeting the binary classification performance 
evaluation requirements at a fundamental level. The method 
was tested on 31 different probabilistic error instruments and 
their variants, which include varying error calculations and 
summary functions. Appendix B and Appendix C contain 
all the relevant equations and instrument abbreviations used 
in this study.

It is worth noting that this study covers the benchmark-
ing of almost all probabilistic instruments, making it clear 
and precise to use the most robust instruments among the 
available alternatives. However, recently proposed proba-
bilistic error instruments with unconventional summary 
functions, such as Mean Arctangent Absolute Percentage 
Error (MAAPE) by Kim and Kim [56], LogCosh [57], and 
“extended” and “composite” instruments compiled in [47], 
are excluded. The instrument designed specifically for 
regression or time series forecasting, such as Mean Squared 
Trend Scaled Error (MSTrdScE), Mean Squared Volatility 
Scaled Error (MSVolScE), or Mean Squared Adjusted Per-
centage Error (MSAdjPE) [58] are also excluded.

5.2.1  Developed simulation tool and probabilistic error/
loss instruments calculator

To evaluate probabilistic instruments under different condi-
tions, a simulation tool was implemented. The tool, depicted 
in Fig. 2, consists of two modules:

• A synthetic binary dataset generator: This module gen-
erates random or manually assigned class label values 
(ground truth) ci ∈ {0, 1} for a given number of Sn sam-
ples.

• A hypothetical binary classifier: This module generates 
corresponding random or manually assigned outcome 
(prediction) variable values pi ∈ [0, 1] for the same 
samples.

The synthetic dataset generator allows for the creation 
of balanced or unbalanced datasets with varying levels of 
overlap between the two classes. The hypothetical binary 
classifier can produce any kind of probabilistic predic-
tion. The combination of the synthetic dataset generator 
and hypothetical binary classifier enables the simulation of 
different classification scenarios that capture diverse levels 
of performances and issues such as imbalance.

In addition to the simulation tool, a probabilistic error/
loss instruments calculator was developed. This calculator 
computes the values of 31 different probabilistic error/loss 

Fig. 2  The flow used in the simulation tool implemented to assess the performance of different hypothetical binary classifiers trained, validated, 
or tested on different synthetic datasets in terms of confusion-matrix-derived and probabilistic error/loss performance instruments
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instruments/instrument variants using the ground truth and 
predicted values from the simulated binary classification 
datasets. The equations and abbreviations for these instru-
ments are provided in Appendices B and C, respectively.

The flow given in Fig. 2 mimics the natural way of 
binary classification performance evaluation by.

• Generating the ground truth examples (known labels/
inputs),

• Setting the corresponding binary classifier predictions 
(outcome values),

• Measuring the low-level performance of the classifier by 
calculating

• confusion matrix based on overall confusion and
• error values per example, and
• Evaluating classification performances using both
• Confusion-matrix-derived and
• Probabilistic error/loss instruments.

In the first example (the row i = 1 in four tables) in Fig. 2, 
the simulation tool correctly identifies a given positive 
ground-truth example (“P”) as positive (“P”), which is a 
(True Positive) classification added to the TP element of 
the confusion matrix. The tool also calculates various error 
values for this input and outcome.

One type of error function is shown in the figure: the 
difference between the ground-truth class value (1) and the 
prediction value (0.8), yielding ei = ci – pi = 0.2.

To aid researchers in their analysis, the simulation tool 
shown in Fig. 3 was prepared as a spreadsheet, providing 
ease and familiarity in computation. It can generate cases 
for any number of Sn examples, allowing the analysis of 
performance instruments under different conditions. The 
calculates:

• The confusion-matrix elements (base measures) based 
on a given threshold (Θ),

• Confusion-matrix-derived performance metrics (e.g., 
TPR and ACC ),

• Error values using different error functions (e.g., ei = ci 
– pi), and

• 31 probabilistic error/loss instruments/instrument vari-
ants, including LogLoss,

Based on predictions made by a hypothetical binary clas-
sifier for each instance of a synthetic binary-class dataset. 
Researchers can access the simulation tool online at https:// 
github. com/ gurol/ Bench Metri csProb, and Appendix D pro-
vides a description of the tool and instructions on how to 
use it.

5.2.2  Simulation cases

Seven simulation cases, each with two subcases, are pro-
posed to analyze the specific behaviors of probabilistic error/
loss instruments. Each case, as described in the subhead-
ings below, allows us to examine the behavior of probabil-
istic instruments under controlled conditions or trends. The 
cases are named based on a “robustness requirement” that an 
instrument should have in the classification scope.

In binary classification, it is important that robust instru-
ments do not favor or show bias towards one class over the 
other class (e.g., positive over negative). To evaluate this 
balance requirement between two opposite classes, each case 
is analyzed by comparing its subcases for case n = {1, 2, 3, 
6, and 7} (i.e. subcase n.1 and n.2 evaluate negative and 
positive classes, respectively). Table 2 summarizes the seven 
cases and subcases.

For example, Case 1 evaluates whether performance 
instruments yield balanced values for type I (false positive, 
i.e. ground-truth negative) and type II (false negative, i.e. 
ground-truth positive) errors. If the error values are not 
similar, the instrument is deemed not robust for Case 1 
because it generates unbalanced error values between the 
two classes. Cases 2 and 3 assess the consistency (balance) 
in minimizing and maximizing prediction error trends. 
Cases 6 and 7 assess the decreasing trend balance of the 
instruments where the predictions are crisp (as if the clas-
sifier is binary, where ci and pi ∈ {0, 1}) and almost crisp 
(as if the classifier is almost binary where ci ∈ {0, 1} and 
pi ∈ {0.01, 0.99}), respectively.

Case 4 assesses the effect of randomness in instruments 
measuring the performance of a random classifier making 
pure and stratified random predictions for the randomized 
examples under two subcases. In the stratified random 
subcase, the classifiers make random predictions exhibit-
ing high performance (i.e. TPR ≳ 0.8 and TNR ≳ 0.8). It 
is expected that error values should be less for the latter 
(stratified) than the values for the former (pure random). 
Case 5 assesses the discrimination capability of the instru-
ments measuring the increasing performance of crisp and 
almost crisp classifiers.

These proposed cases test and compare the instruments 
against defined robustness requirements that are true or 
natural for binary classifications. The detailed results 
provided in the following subsections show that some 
instruments do not satisfy certain cases, which are also 
highlighted in Sect. 6. For the experimentation, the simu-
lation tool was configured according to the “Ground truth 
(ci) and Prediction (pi) conditions” in Table 2 to generate 
a simulated binary classification application comprising 
synthetic dataset instances and corresponding hypothetical 
classifiers’ predictions.

https://github.com/gurol/BenchMetricsProb
https://github.com/gurol/BenchMetricsProb
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5.2.2.1 Case  1: balanced over/under‑prediction errors 
or type I versus type II errors Case 1 is designed to assess 
the balance between over-prediction and under-prediction 
(i.e. are the predictions above or below the ground truth 
statistically unbiased?). This case is a concern in regres-
sion [49] and time series forecasting [59]. Comparing the 
error levels produced by a probabilistic instrument for 
each class reveals an imbalanced class evaluation, which 
is not preferred in a typical situation (i.e. giving more 
importance to one class). Case 1 is proposed to measure 
such a defect. It consists of two subcases to compare per-
formance instrument results:

• Case 1.1: Over-prediction (type I error): False-positive 
prediction error occurs when a binary classifier pre-
dicts a negative class (“N”) labeled instance as positive 
(“OP”) with an error score where pi > ci.

• Case 1.2 Under-prediction (type II error): False-neg-
ative prediction error occurs when a binary classifier 
predicts a positive class (“P”) labeled instance as nega-
tive (“ON”) with an error score where pi < ci.

The simulation tool generates 20 simulated binary clas-
sification applications based on the configurations speci-
fied in the “Ground truth and Prediction Conditions” col-
umn in Table 2 and specifically shown in Table 3.

Table 2  Simulation cases for evaluation of the robustness of probabilistic error instruments (complete simulation data is provided in online 
material)

Case Subcase Description Ground truth (ci) and
Prediction (pi) conditions

Notes (input generation or 
results)

Number of 
example 
classifica-
tions

Case 1 Balanced over/under-prediction errors or type I versus type II errors
 1.1 Over-prediction (pi > ci) average 

values
ci = 1 (“N”) ∈ {1, 2}, pi in [1.5, 2] 

(“OP”) and Θ = 1.5(1)
All outcomes are “FP”
(Type I error)

20

 1.2 Under-prediction (pi < ci) average 
values

ci = 2 (“P”) ∈ {1, 2}, pi in [1, 1.5] 
(“ON”) and Θ = 1.5(1)

All outcomes are “FN”
(type II error)

Case 2 Showing a consistent trend with minimizing prediction errors
 2.1 All “TN” on negative-only samples 

with minimizing error
ci = 0 ∈ (“N”) {0, 1} and
pi in [0, 0.4] ➝ [0, 0.00001] (“ON”)

In 7 steps 8

 2.2 All “TP” on positive-only samples 
with minimizing error

ci = 1 ∈ (“P”) {0, 1} and
pi in [0.5, 1] ➝ [0.9999, 1] (“OP”)

Case 3 Showing a consistent trend with maximizing prediction errors
 3.1 All “FP” on negative-only samples 

with maximizing error
ci = 0 ∈ (“N”) {0, 1} and random pi
in [0.5, 0.6] ➝ [0.99, 1] (“OP”)

In 9 steps 10

 3.2 All “FN” on positive-only samples 
with maximizing error

ci = 1 ∈ (“P”) {0, 1} and random pi
in [0.4, 0.5] ➝ [0, 0.1] (“ON”)

Case 4 Random predictions for random class instances
 4.1 Random Random pi in [0, 1]

on random ci ∈ {0, 1} samples
20

 4.2 Stratified Random
with high performance

Random pi in [0, 1]
on random  ci ∈ {0, 1} datasets

TPR ≳ 0.8 and TNR ≳ 0.8

Case 5 Showing a consistent trend with increasing performance of crisp/almost-crisp (binary) classifiers
 5.1 Increasing performance ci and pi ∈ {0, 1} TP = 10 − i, FP = i, FN = i, 

TN = 10 − i where i = 10.0.0
11

 5.2 ci ∈ {0, 1} and pi ∈ {0.01, 0.99}
 Case 6 Showing a consistent trend with decreasing performance per class

for crisp binary-classifiers on increasing dataset size
6.1 Increasing FN and Sn ci and pi ∈ {0, 1} FN = 4, 9, 14, 19, and  24(2) 5
6.2 Increasing FP and Sn FP = 4, 9, 14, 19, and  24(2)

Case 7 Showing a consistent trend with decreasing performance per class
for almost-crisp binary-classifiers on increasing dataset size

 7.1 Increasing FN and Sn ci ∈ {0, 1} and pi ∈ {0.01, 0.99} FN = 4, 9, 14, 19, and  24(2) 5
 7.2 Increasing FP and Sn FP = 4, 9, 14, 19, and  24(2)

(1)c values shifted to 1 and 2 instead of 0 and 1 to avoid division-by-zero errors
(2)Sn = 5, 10, 15, 20, and 25
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Note that c and p values are shifted to 1 and 2 instead 
of 0 and 1, respectively, to avoid division-by-zero errors. 
Figure 4 shows the corresponding settings and generated 
instances (only the first five rows are shown here). Table 4 
shows the results of Case 1, including the average instru- 
ment values ( M ) in over-prediction (type I error) versus  
under-prediction (type II error), the delta percentage 
between, and the indication of unbalance determined by  
the 0.05 significance level.

The evaluation reveals that performance instruments, 
including the symmetric ones, tend to penalize over-pre-
dictions (type I) errors more than under-prediction (type 
II) errors, with an average of 1.00 and 0.83, respectively 

(the difference is – 17%, excluding N/As). Note the subcat-
egorization of probabilistic instruments (subtypes, the first 
column in Table 4) used in this study is similar to common 
approaches in the literature [47].

5.2.2.2 Case 2: showing a consistent trend with minimizing 
prediction errors Case 2 is designed to test the hypothesis 
that probabilistic instruments will produce lower values as 
prediction errors are minimized. The simulation tool is con-
figured as expressed in Table  2 to generate the following 
subcases:

Table 3  Simulation cases for 
evaluation of the robustness of 
probabilistic error instruments 
(complete simulation data is 
provided online)

Input method 
settings

Synthetic dataset generator Hypothetical binary classifier

Ground truth (known labels) Predictions (decision threshold Θ = 1.5)

Case 1.1 Set manually (fixed) ci = 1 (“N”) Randomly generated pi in [1.5, 2] (“OP”)
Case 1.2 ci = 2 (“P”) pi in [1, 1.5] (“ON”)

Fig. 4  Screenshots of the simulation tool (parts I–IV in Appendix D) 
for (a) Case  1.1 (all instances are negative and all predictions are 
outcome positive) and (b) Case 1.2 (all instances are positive and all 

predictions are outcome negative). Please compare with Table  3 to 
understand how to use the simulation tool
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• Case 2.1: Minimizing random prediction errors in neg-
ative-only datasets: Prediction scores (pi) are randomly 
generated from [0, 0.4] interval (high error margin) to 
[0, 0.00001] interval (low error margin) in seven steps: 
[0, 0.4], [0, 0.3], [0, 0.2], [0, 0.1], [0, 0.01], [0, 0.001], 
[0, 0.0001], [0, 0.00001]. In this minimizing error trend, 
negative random prediction scores are within the inter-
val limits that are selected from a high error margin 
(0 ≤ pi ≤ 0.4 < θ = 0.5 decision threshold) to a low error 
margin (0 ≤ pi ≤ 0.00001 ≪ θ = 0.5).

• Case 2.2: Minimizing random prediction error in pos-
itive-only datasets: Prediction scores (pi) are randomly 
generated from [0.5, 1] interval (high error margin) to 
[0.9999, 1] interval (low error margin) in seven steps: 
[0.5, 1], [0.6, 1], [0.7, 1], [0.8, 1], [0.9, 1], [0.99, 1], 
[0.999, 1], [0.9999, 1]. In this minimizing trend, positive 

random prediction scores are within the interval limits 
that are selected from a high error margin (θ = 0.5 ≤ pi ≤ 1) 
to a low error margin (θ = 0.5 ≪ 0.9999 ≤ pi ≤ 1).

Case 2 demonstrates that there are some probabilistic 
instruments that do not align with the trend of minimizing 
prediction errors:

• The symmetric percentage errors (sMAPE, nsMAPE, 
and nsMdAPE), whichare always equal to 1 according 
to Eq. (1), making a fixed aggregation function used in 
those instruments.

• LogLossgoes infinite in Case 2.1.

(1)symei =
|ei|

|ci+pi| =
|ci−pi|
|ci+pi| =

|0−pi|
|0+pi| =

|−pi|
|pi| = 1,

Table 4  Case 1 (balanced over/
under-prediction errors or type I 
versus type II errors) results per 
instrument

Bold values denote instances that are inappropriate or negative
Underlined table elements denote abnormal or non-robust cases

Average Instrument Values ( M)

Subtype Instruments Case 1.1:
Over-prediction

Case 1.2
Under-prediction

Delta(1) Balanced? (2)

(Raw) ME 0.75 –0.74 –198% No
Squared MSE 0.59 0.57 –3%

RMSE 0.77 0.75 –2%
MdSE 0.57 0.55 –4%
SSE 11.73 11.37 –3%
nMSE v1 0.33 0.23 –32% No
nMSE v2 division-by-0 division-by-0 N/A N/A
nMSE v3 division-by-0 division-by-0 N/A N/A
nMSE v4 0.59 0.14 –76% No
nMSE v5 0.21 0.16 –24% No

Absolute MAE 0.75 0.74 –2%
MdAE 0.75 0.74 –2%
MxAE 0.98 0.97 –1%
GMAE 0.74 0.73 –2%

Relative MRAE division-by-0 division-by-0 N/A N/A
MdRAE division-by-0 division-by-0 N/A N/A
GMRAE division-by-0 division-by-0 N/A N/A
RAE division-by-0 division-by-0 N/A N/A
RSE division-by-0 division-by-0 N/A N/A

Percentage MPE 0.75 –0.37 –149% No
MAPE(p, c) 0.75 0.37 –51% No
MdAPE 0.75 0.37 –51% No
RMSPE 0.77 0.38 –51% No
RMdSPE 0.75 0.37 –51% No

Percentage 
(Symmetric)

nsMAPE 0.27 0.23 –15% No
nsMdAPE 0.27 0.23 –17% No

Loss LogLoss –2.41 –0.97 –60% No

(1)
100

Mover−prediction−Munder−prediction

Mover−prediction

(2) Delta > 0.05
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5.2.2.3 Case  3: showing a  consistent trend with  maximiz‑
ing prediction errors Case 3 serves as a maximizing error 
counterpart for Case 2:

• Case 3.1: Maximizing random prediction errors on neg-
ative-only datasets: Prediction scores (pi) are randomly 
generated from the [0.5, 0.6] interval (low error mar-
gin) to the [0.99, 1] interval (high error margin) in nine 
steps: [0.5, 0.6], [0.5, 0.7], [0.5, 0.8], [0.5, 0.9], [0.5, 1], 
[0.6, 1], [0.7, 1], [0.8, 1], [0.9, 1], [0.99, 1]. In this maxi-
mizing error trend, negative random prediction scores 
are within the interval limits that are selected from a low 

error margin (θ = 0.5 ≤ pi ≤ 0.6) to a high error margin 
(θ = 0.5 ≪ 0.99 ≤ pi ≤ 1).

• Case 3.2: Maximizing random prediction error on pos-
itive-only datasets: Prediction scores (pi) are randomly 
generated from the [0.4, 0.5] interval (low error margin) 
to the [0, 0.1] interval (high error margin) in nine steps: 
[0.4, 0.5], [0.3, 0.5], [0.2, 0.5], [0.1, 0.5], [0, 0.5], [0, 
0.4], [0, 0.3], [0, 0.2], [0, 0.1], [0, 0.01]. In this maximiz-
ing error trend, positive random prediction scores are 
within the interval limits that are selected from a low 
error margin (0.4 ≤ pi ≤ θ = 0.5) to a high error margin 
(0 ≤ pi ≤ 0.01 ≪ θ = 0.5).

Table 5  Case 4 (random 
predictions for random class 
instances) analysis (instruments 
are sorted by increasing order 
within subtype)

Bold values denote instances that are inappropriate or negative
Underlined table elements denote abnormal or non-robust cases
(1) The instrument average values ( M ) for Case 4.1 and Case 4.2 where MCase4.2 < MCase4.1

(2) M s are sorted according to instrument range [0, 1] and mid-range (0.5)
(3) M s are sorted per range per instrument subtype
(4) sMAPE is [0, 2] and equal to 2 × nsMAPE
(5)  nMSE variant 5 and (non-symmetric) percentage error instruments (MPE, MAPE(p, c), MdAPE, 
RMSPE, and RMdSPE) exhibit division-by-zero error
(6)  Case 4.2 and Case 4.1 values for ME violate the condition specified in table footnote (1) above 
( 0.02  −0.05)

Subtype Range Instrument Case 4.2(1) Position(2) Case 4.1(1)

Squared [0, 1] MdSE 0.11 0 < 0.11 < 0.26 < 0.5 < 1.0 0.26
MSE 0.19 0 < 0.19 < 0.34 < 0.5 < 1.0 0.34
RMSE 0.43 0 < 0.43 < 0.5 < 0.58 < 1.0 0.58
Intra position:(3) MdSE ≤ MSE < RMSE

Squared [0, ∞) nMSE v4 0.40 0 < 0.4 < 0.65 0.65
nMSE v1 0.79 0 < 0.79 < 1.37 1.37
nMSE v2 0.73 0 < 0.73 < 1.38 1.38
nMSE v3 0.77 0 < 0.77 < 1.46 1.46
SSE 3.74 0 < 3.74 < 6.8 6.80
nMSE v5 div-by-0 N/A div-by-0
Intra position:(3) nMSE (v4 ≤ v1 ≤ v2 ≤ v3) ≤ SSE (nMSE v5: div-by-0)

Relative [0, ∞) GMRAE 0.56 0 < 0.56 < 0.82 0.82
MdRAE 0.68 0 < 0.68 < 1.08 1.08
MRAE 0.77 0 < 0.77 < 1.13 1.13
RAE 15.38 0 < 15.38 < 22.58 22.58
RSE 17.67 0 < 17.67 < 37.41 37.41
Intra position:(3) GMRAE ≤ MdRAE ≤ MRAE ≤ RAE ≤ RSE

Absolute [0, 1] GMAE 0.27 0 < 0.27 < 0.37 < 0.5 < 1.0 0.37
MdAE 0.33 0 < 0.33 < 0.5 = 0.5 < 1.0 0.50
MAE 0.36 0 < 0.36 < 0.5 = 0.5 < 1.0 0.50
MxAE 0.88 0 < 0.5 < 0.88 < 0.96 < 1.0 0.96
Intra position:(3) GMAE ≤ MdAE ≤ MAE ≤ MxAE

Percentage 
(Symmetric)

[0, 1] nsMAPE 0.63 0 < 0.5 < 0.63 < 0.68 < 1.0 0.68
nsMdAPE 0.77 0 < 0.5 < 0.77 < 0.81 < 1.0 0.81
Intra position:(3) nsMAPE ≤ nsMdAPE(4)

[0, ∞) LogLoss 1.31 0 < 1.31 < 1.60 1.60
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Case 3 has shown that only these instruments conflict 
with the minimizing trend:

• The symmetric percentage errors (nsMAPE and nsM-
dAPE)are always 1 in Case 3.1, as explained in Case 2.

• LogLossgoes zero in Case 3.1.
• ME and MPE go to –1 in Case 3.2.

5.2.2.4 Case  4: random predictions for  random class 
instances Case 4 is an evaluation of instruments that meas-
ure random prediction pi in [0, 1] on random class instances 
ci ∈ {0, 1}. This case provides a pure perspective for evaluat-
ing and comparing the instruments without any side effects. 
There are two subcases in Case 4:

• Case  4.1: Random predictions and datasets: Class 
instances and corresponding predictions are generated 
randomly.

• Case 4.2: Stratified random predictions and datasets: 
Class instances are generated randomly, but the corre-
sponding predictions are generated proportionally based 
on a true positive/negative rate equal to or greater than 
0.8, which is the expected minimal accuracy for a classi-
fier.

Table 5 lists average instrument values ( M ) for Case 4.2 
stratified random first then Case 4.1 random because the for-
mer presents less error (TNR ≥ 0.8 when ci = 0 or TPR ≥ 0.8 
when ci = 1). The instruments are grouped by instrument 
subtype and range.

The following requirements are expected for evaluating 
probabilistic error/loss instruments:

• No division-by-zero error in M
• MCase4.2 < MCase4.1

nMSE variant 5 and (non-symmetric) percentage error 
instruments, namely MPE, MAPE, MdAPE, RMSPE, and 
RMdSPE, exhibit division-by-zero error for randomly gen-
erated inputs.

Table 5 also provides more insights into the instruments:

• Intra positions: As explained in Table 1, individual error 
instruments are identified by aggregation function (g). 
Table 5 lists the relative positions of the instruments with 
the same range within the same subtype (e.g., squared 
error for [0, 1] and [0, ∞) ranges). The positions identi-
fied by geometric/arithmetic means and root mean square 
(also known as quadratic) are consistent with known 
mathematical inequalities [60]: Harmonic mean ≤ Geo-
metric mean ≤ Arithmetic mean ≤ Quadratic mean (e.g., 

MSE < RMSE or GMRAE ≤ MRAE ≤ RSE). Because mean 
and median aggregation functions depend on the data 
distribution there is no mathematically identifiable order-
ing. However, median instruments yield lower values 
than mean instruments (MdSE ≤ MSE, MdRAE ≤ MRAE, 
MdRAE ≤ MRAE, and MdAE ≤ MAE), except symmetric 
percentage instruments (nsMAPE ≤ nsMdAPE).

• Range and mid-range: Instrument range, specifically mid-
range (i.e. the middle value of the range), is also a prop-
erty to evaluate the instruments. The closed intervals, 
namely [0, 1] and [–1, 1] ranges, are meaningful to exam-
ining mid-ranges. The results in Table 5’s “Position” 
column, show that mid-ranges differ for the instruments 
even within the same subtype and range. Therefore, it 
might seem obvious, but the values of different instru-
ments cannot be compared (e.g., comparing MSE in one 
classification application with RMSE in the other one). 
The instruments yielding 0.5 average values for random 
simulation data (Case 4.1) are MdAE and MAE.

Note that there are two instruments with [–1, 1] 
ranges: ME and MPE. ME violates the condition 
MECase4.2 < MECase4.1 ( 0.02  −0.05 ) and MPE yields a 
division-by-zero error.

5.2.2.5 Case  5: showing a  consistent trend with  increas‑
ing performance of  crisp/almost‑crisp (binary) classifi‑
ers Case 5 examines extreme prediction scores to emulate 
crisp or almost-crisp binary classifiers where.

• Case 5.1 Crisp classifiers: pi is either 0 (for “Outcome 
Negative”) or 1 (for “Outcome Positive”).

• Case 5.2 Almost-crisp classifiers: pi is either 0.01 (for 
“Outcome Negative”) or 0.99 (for “Outcome Positive”).

The aim of Case 5 is to assess the trend consistency with 
a measurable performance difference among consecutive 
classification application simulations with a test sample size 
(Sn) of 20. The confusion-matrix for each simulation starts.

• From the lowest performance {TP = 0, FP = 10, FN = 10, 
TN = 0}

• To the highest performance {TP = 10, FP = 0, FN = 0, 
TN = 10}

where the elements are changed by {TP =  + 1, FP = –1, 
FN = –1, TN =  + 1}.

Note that there is no need to evaluate the decreasing per-
formance because it is the inverse of the increasing perfor-
mance simulation. Consistency with increasing performance 
is the same as consistency with decreasing performance 
from the last to the first simulated binary classification 
application.
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The simulation instance inputs were manually pro-
vided in the simulation tool by satisfying the confusion 
matrix elements for each simulation. For example, for the 
first simulation with {TP = 10, FP = 0, FN = 0, TN = 10} 
confusion-matrix:

• To achieve TP = 10, the first 10 instances are manually 
generated using ci = 1 (“P”) and pi = 1 (“OP”) and

• To achieve TN = 10, the second 10 instances are manually 
generated using ci = 0 (“N”) and pi = 1 (“ON”).

Likewise, the second simulation with {TP = 9, FP = 1, 
FN = 1, TN = 9} confusion-matrix:

• To achieve TP = 9, the first 9 instances are manually gen-
erated using ci = 1 (“P”) and pi = 1 (“OP”),

• To achieve TN = 9, the second 9 instances are manually 
generated using ci = 0 (“N”) and pi = 1 (“ON”),

• To achieve FP = 1, the next instance (i = 19) is manually 
generated using ci = 0 (“N”) and pi = 1 (“OP”), and

• To achieve FN = 1, the last instance (i = 20) is manually 
generated by ci = 0 (“P”) and pi = 1 (“ON”).

Case 5 demonstrates that all instruments are in line with 
the trend, but the simulations for the following instruments 
show unexpected behavior.

• The median aggregation instruments (MdSE, MdAE, and 
MdRAE) were unable to distinguish the performance 
increase and produced three unique values rather than 
eleven.3

• MxAE producing three distinct values ranging from 2 to 
0 (five 2 s, one 1, and five 0 s).

• For all percentage subtype instruments (including sym-
metric ones), instruments with geometric mean aggre-
gation functions (GMAE and GMRAE), and nMSE v5 
producing a division-by-zero error in Case 5.1.

Table 6 summarizes the results of Case 4 in terms of the 
average discrimination rate of the two subcases. Robust 

Table 8   Evaluation details of the robustness of probabilistic error instruments for binary classification performance evaluation. The ranks are 
the average of the two stages

Ranks Stage 1: Qualitative robustness 

evaluation criteria(1)

Stage 2: Quantitative robustness

evaluation cases(2)

Subtype Abbreviation Interval Instrument Name Overall Stage 1 Stage 2 1(3) 2 3 4 5 1 2 3 4 5 6 – 7
SSE [0, ∞) Sum Squared Error 1 1 1 100% 100% 100% 100% 100% 100%

MSE [0, 1] Mean Squared Error 2 1 2 100% 100% 100% 100% 100% 20%

RMSE [0, 1] Root Mean Square Error 2 1 2 100% 100% 100% 100% 100% 20%

MdSE [0, 1] Median Squared Error 6 1 6 100% 100% 100% 100% 27% 20%

nMSE [0, ∞) Normalized Mean Squared Error (v1) 9 10 9 No(4) 0% 50% 50% 100% 100% 100%

[0, ∞) Normalized Mean Squared Error (v2) 16 20 10 No(4) No 0% 0% 0% 100% 100% 100%

[0, ∞) Normalized Mean Squared Error (v3) 16 20 10 No(4) No 0% 0% 0% 100% 100% 100%

[0, ∞) Normalized Mean Squared Error (v4) 16 20 10 No(4) No 0% 50% 50% 100% 100% 0%

Squared 

Error

[0, ∞) Normalized Mean Squared Error (v5) 22 10 24 No(4) 0% 50% 50% 0% 0% 0%

MAE Mean Absolute Error 2 1 2 100% 100% 100% 100% 100% 20%

GMAE Geometric Mean Absolute Error 5 1 5 100% 100% 100% 100% 50% 20%

MdAE Median Absolute Error 6 1 6 100% 100% 100% 100% 27% 20%

Absolute 

Error

MxAE

[0, 1]

Maximum Absolute Error 8 1 8 100% 100% 100% 100% 18% 20%

Loss LogLoss [0, ∞) LogLoss 10 1 21 0% 50% 50% 100% 5% 0%

MRAE Mean Relative Absolute Error 10 12 10 No 0% 0% 0% 100% 100% 100%

RAE Relative Absolute Error 10 12 10 No 0% 0% 0% 100% 100% 100%

RSE Relative Squared Error 10 12 10 No 0% 0% 0% 100% 100% 100%

GMRAE Geometric Mean Relative Absolute Error 16 12 18 No 0% 0% 0% 100% 50% 100%

Relative 

Error

MdRAE

[0, ∞)

Median Relative Absolute Error 21 12 20 No 0% 0% 0% 100% 27% 100%

sMAPE [0, 2] Symmetric Mean Absolute Percentage Er. 14 12 16 No(5) 0% 50% 50% 100% 50% 20%

nsMAPE [0, 1] Normalized Symmetric Mean Abs. Per. Er. 14 12 16 No(5) 0% 50% 50% 100% 50% 20%
Percentage 

(Symmetric) nsMdAPE [0, 1] Normalized Symmetric Median Abs. Per. Er. 20 12 19 No(5) 0% 50% 50% 100% 9% 20%

MdAPE [0, 1] Median Absolute Percentage Error 23 23 22 No(5) No 0% 50% 50% 0% 50% 0%

MAPE [0, 1] Mean Absolute Percentage Error 25 23 24 No(5) No 0% 50% 50% 0% 0% 0%

RMSPE [0, 1] Root Mean Square Percentage Error 25 23 24 No(5) No 0% 50% 50% 0% 0% 0%

RMdSPE [0, 1] Root Median Square Percentage Error 25 23 24 No(5) No 0% 50% 50% 0% 0% 0%

Percentage 

Error

MPE [-1, 1] Mean Percentage Error 28 28 28 No No(5) No 0% 50% -50% 0% 0% 0%

(Raw) ME [-1, 1] Mean Error 24 23 23 No No 0% 100% 0% 0% 9% 0%

Notes:
(1) Only unsatisfied criteria are shown for the readability (all the other criteria results are “Yes”), (2) Only unsatisfied cases (less than 100%) are shown for the readability (all the other case results are 100%), 

(3) Only the scaled subtyped instruments (MASE, MdASE, and RMSSE) do not satisfy Criterion 5. Hence, these instruments that are specifically used regression and time series forecasting are excluded and not 

shown above. See Subsection 5.1.1 for further information, (4) For unrealistic cases, (5) For possible cases

Stage 1 Criteria:
Criterion 1: No interdependency in error functions, Criterion 2: Scale invariance, Criterion 3: Error/loss information preservation, Criterion 4: Valid outputs, Criterion 5: Parametric symmetry (c ↔ p)

Stage 2 Cases:
Case 1: Balanced over/under-prediction errors or type I versus type II errors, Case 2: Showing a consistent trend with minimizing prediction errors,

Case 3: Showing a consistent trend with maximizing prediction errors, Case 4: Random predictions for random class instances,

Case 5: Showing a consistent trend with increasing performance of crisp/almost-crisp (binary) classifiers,

Case 6 – 7: Showing a consistent trend with decreasing performance per class for crisp/almost-crisp (binary) classifiers on increasing dataset size

Bold values denote instances that are inappropriate or negative
Underlined table elements denote abnormal or non-robust cases

3 MdSE: From 1 to 0 with three unique values (five 1 s, one 0.5, and 
five 0 s), MdAE: From 1 to 0 with three unique values (five 1 s, one 
0.5, and five 0 s) and MdRAE: From 2 to 0 with three unique values 
(five 2 s, one 1, and five 0 s).
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instruments should distinguish those classification appli-
cations. The case demonstrated that percentage subtyped 
instruments cannot distinguish different applications. 
LogLoss and ME also had a low-level discrimination rate. 
Another finding is that the discrimination capability of 
median and partially geometric mean aggregation functions 
degrades within each subtype.

5.2.2.6 Case 6/7: showing a consistent trend with decreas‑
ing performance per  class for  crisp/almost‑crisp (binary) 
classifiers on  increasing dataset size Case 6 and Case  7 
investigate the ability of probabilistic error/loss instruments 
to distinguish between classification applications with 
decreasing performance per class. Case 7 evaluates almost-
crisp binary classifiers similar to Case 5.2. The results of 
Cases 6 and 7 are presented in Table 7, in terms of the aver-
age discrimination rate of four subcases. Robust instruments 
should be able to distinguish between these classification 
applications.

Similar to Case 5, the percentage subtyped instruments 
were unable to distinguish between different applications in 
Cases 6 and 7. Furthermore, LogLoss and ME had the lowest 
level of discrimination rate compared to Case 5. Absolute 
subtyped instruments produced only one value for all combi-
nations. However, unlike Case 5, the median and geometric 
mean aggregation functions did not show a degradation in 
their discrimination capability within each subtype.

6  Results

In total, 31 probabilistic instrument variants were evaluated 
via BenchMetrics Prob, qualitatively in Stage 1 and quan-
titatively in Stage 2. The overall benchmarking results are 
summarized in Table 8, which also provides specific defi-
ciencies found in some instruments. The instruments are 
ranked based on their average rates for the seven simulation 
cases and positioned per subtype to see which alternatives 
are better in one subtype (e.g., MAE in absolute subtyped 
instruments). Here are the key findings:

• Criterion 3: positive and negative errors cancel each 
other out in ME and MPE. This completely misleads 
the interpretation of results. In the worst-case scenario, 
they can yield even zero (no error) even when the indi-
vidual errors are high (e.g., half of all the errors are 0.9 
and the others are – 0.9).

• Criterion 4: division-by-zero occurs in all percentage 
error instruments (e.g., MPE and MAPE) when the 
samples have at least one negative class (N > 0).

• Criterion 1: Scaled error instruments (MASE, MdASE, 
and RMSSE) for regressions and time series forecast-
ing  [61] are not applicable in binary classification Ta
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because there is no innate sequence/order in dataset 
samples for classification.

• Case 1: Instruments yield unbalanced over-prediction/
type I errors (pi > ci, false positive) versus under-pre-
diction/type II (pi < ci, false negative) errors, penal-
izing over-prediction/type I errors more than under-
prediction/type II errors. This finding corresponds to 
class imbalance bias in some confusion-matrix-derived 
instruments (e.g., ACC  or F1) [62]. However, the rate 
of unbalance is lowest (|Delta|< 0.05%) for squared 
(except nMSE variants) and absolute subtyped instru-
ments.

• Cases 2 and 3: Relative and partial percentage (including 
symmetric percentage), ME, and LogLoss instruments 
exhibit conflicting minimizing and maximizing trends.

• Case 4: Percentage and ME exhibited conflicting relativ-
ity in random and stratified random prediction errors.

• Case 5: Most of the instruments had conflicting behav-
iors in increasing performance of crisp and almost-crisp 
binary classifiers. Median and geometric mean aggrega-
tion functions exhibit confliction considering the base 
form for squared, absolute, and relative absolute subtypes 
(e.g., MdSE vs. MSE; GMAE or MdAE vs. MAE; and 
GMRAE or MdRAE vs. MRAE).

• Cases 6 and 7: The top-ranked instruments, such as MSE, 
RMSE, and MAE, significantly failed with respect to dis-
tinguishing ability and consistency with decreasing per-
formance per class.

Out of 31 instruments/instrument variants, the analysis 
distinguished the robustness of nine main instruments with 
a total of 19 variants. These instruments are presented in two 
performance instrument categories (metrics and measures) 
in two-dimensional tabular form in Table 9. The final ranks 
were calculated by ranking the average ranks of Stage 1 and 
Stage 2:

• The most robust instrument is SSE which is a measure 
with [0, ∞) interval.

• The second robust instruments are metrics with a closed 
interval [0, 1]: MSE, RMSE variant, and MAE.

Although SSE is more robust than MSE, RMSE, and 
MAE, it has one major disadvantage: low interpretability. 
The second robust instrument exhibits deficiency only in 
Cases 6 and 7. Metrics with [0, 1] intervals are easier to 
interpret and compare than measures with open intervals. 
This could be why it is rarely used in the literature. Among 
the most reviewed instruments in the regression context, 

namely MSE, RMSE, MAE (starting from the 1990s), and 
MAPE (from the 2000s) [47], MAPE exhibits a low level of 
robustness in the classification context. Note that the indi-
vidual stage ranks are consistent per each instrument except 
LogLoss, which is the most robust  (1st) one in Stage 1, but 
the  10th most robust one in Stage 2.

7  Discussions

One of the practical problems in analyzing probabilistic 
error instruments, which was also observed in this study, is 
that there are already numerous instruments. Furthermore, 
the variance of the error functions (e), aggregation func-
tions (g), and their combinations are high. This study also 
compiled the frequency distribution of elements forming 
a probabilistic error instrument in Table 11, which helps 
to identify the most representative ones. The instruments’ 
high-level derivation is managed by defining the main 
instrument as the most basic aggregation form (e.g., mean) 
as representing other forms (such as geometric mean, 
median, min/max) as variants, often achieved through 
normalization or exceptional aggregation functions. The 
identical instruments described in the literature with vari-
ous equations were enumerated with numbers (e.g., nMSE 
v1 – v5). The proposed performance instrument subtype 
categorization seen in Tables 4, 5, 6, 7, 8 and main/variant 
distinction per subtype, which are not found in the related 
literature, considerably simplify the initial comprehension 
and consecutive analysis by allowing us to focus only on 
the most representative ones. As a result of such catego-
rization, future instrument variant proposals with unusual 
aggregation functions should first behave more robustly 
in the same subtype. One consequence of this approach in 
current research practices is RMSE, which is simply the 
square root of MSE, is a variant of MSE. In other words, 
MSE is the main and RMSE is the variant in the “squared 
error” subtype. The distinction between measures with 
open intervals and metrics with closed intervals was also 
employed in this study. Hence, the evaluated instruments 
can be considered as nine main instruments (five metrics 
and four measures) instead of over 31 main instruments 
and instrument variants.

The proposed benchmark demonstrated that the proba-
bilistic error/loss instruments behave differently in clas-
sification than in regression. Instrument robustness refers 
to the ability of an error instrument to provide consistent 
and reliable performance evaluation across different sce-
narios. The findings revealed specific robustness issues in 
instruments for binary classification performance evalua-
tion. Some undesirable rationales observed in regression, 
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on the other hand, are inapplicable in the classification 
context. Scale invariance, for example, which is partially 
satisfied in regression, is valid by definition in classifica-
tion. Hence, the initial expectation that there would be 
minor issues when the instruments originally designed for 
regression are used for binary classification was not met. 
Instrument robustness in classification differs from that 
in regression.

The most important result of BenchMetrics Prob, which 
is provided in Table 8 and merits its own discussion, is that 
the most robust metric is not the single but three instru-
ments, namely MSE, RMSE, and MAE. This finding should 
be evaluated first from a regression standpoint, where the 
metrics measure the difference between the predicted values 
and true values in a continuous output:

• In general, MSE is a commonly used for regression prob-
lems and penalizes large differences between the pre-
dicted and actual values. MSE is sensitive to outliers and 
the scale of the target variable, meaning that large differ-
ences in the target variable will have a disproportionate 
effect on the result.

• RMSE is simply the square root of MSE, which rescales 
the results so that they are in the same units as the target 
variable. This makes it easier to interpret the results, and 
often results in more human-interpretable numbers, as 
the values are in the same units or range as the target 
variable. MSE, on the other hand, is more computation-
ally efficient, as it does not require taking the square root.

• Empirical studies showed that MAE can be more robust 
to outliers [63], as it only considers the absolute value of 
the errors, whereas RMSE and MSE give more weight to 
larger errors. Hence, they can become much larger than 
MAE.

The choice of evaluation metric in regression depends on 
the specific goals and requirements of the problem and the 
desired properties of the evaluation metric. For instance, if 
large errors are crucial, then RMSE may be a better choice. 
On the other hand, if all errors are equally important, then 
MAE may be the preferred choice. The choice of evaluation 
metric also depends on the specifics of the data, such as 
the distribution of errors and the presence of outliers. The 
literature poses contradictory claims recommending among 
MSE, RMSE, and MAE in regression [4, 64].

In binary classification problems where target variables 
are bounded in a specific special range [0, 1], three evalu-
ation metrics that are also in the same range become suit-
able. The range enforces this order: RMSE ≥ MAE ≥ MSE 
where |ei|≥ ei

2 and RMSE =
2
√
MSE ≥ MSE . Note that the 

equality holds only when MAE is either 0 or 1. However, 

this order is not valid in regression where the ranges are 
higher than 1, and the distribution of errors may vary. For 
example, RMSE can be less than MSE.

The final choice between RMSE, MSE, and MAE in 
binary classification depends on the specific goals and 
requirements of the problem and the desired properties 
of the evaluation metric. For instance, if large errors are 
more important than small errors, then RMSE can be a 
better choice. On the other hand, if all errors are equally 
important, then MAE can be the preferred choice. The 
order also suggests that among these three robust metrics, 
MSE implies the best performance since it is closer to 
zero error.

The study also reveals that some uncommon aggrega-
tion functions (g), such as median for mean or geometric 
mean for mean, which are considered or suggested as an 
improvement or novelty over existing ones from a regression 
perspective, present robustness issues in binary classifica-
tion. The conventional forms are better. Future claims to 
improve the existing metrics by proposing variants replacing 
the aggregation functions with uncommon ones might not be 
validated by BenchMetrics Prob. This study also addressed 
the observed confusion in the literature regarding the defini-
tion of nMSE. There are five variants of nMSE compiled in 
the literature (see Eqs. (B.14 – B.18)). Taking BenchMetrics 
Prob results into account, the variants are numbered from the 
most robust one. Hence, nMSE v1 with Eq. (B.14) should be 
used in a binary classification context.

The theoretical implications of this study are.

• To define objective and measurable criteria and cases 
for evaluating the robustness of probabilistic error/loss 
instruments in binary classification, and

• To establish a well-founded testing methodology for 
them.

The practical implications are.

• To increase awareness regarding the problematic instru-
ments and their specific weaknesses, and

• To assist researchers in terms of selecting a robust instru-
ment for their application domain in addition to the con-
ventional ones used in the domain when necessary.

A further implication of transitioning to robust instru-
ments is the possibility that different machine learning 
approaches in the literature may come to prominence in spe-
cific domains that require using those metrics as a standard 
practice.
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7.1  Limitations

This study proposes five qualitative criteria and 14 quanti-
tative subcases to evaluate the robustness of probabilistic 
error/loss instruments in binary classification. These criteria 
and cases provide a comprehensive evaluation of existing 
instruments. The quantitative evaluation provides a more 
precise measurement of robustness, while the qualitative 
evaluation highlights the essential properties of instruments 
to be used in classification problems. However, there may be 
other factors in addition to the proposed criteria and espe-
cially cases. Interested researchers can extend the existing 
methodology by incorporating these factors.

One limitation of the existing instruments is the division-
by-zero defect, which is a known issue in performance error/
loss instruments in regression. Although some corrections 
such as adding a small value or practically the lowest non-
zero value of observed data have been proposed in the lit-
erature [65], they may not suitable for binary classification, 
as divide-by-zero inherently creates uncertainties in perfor-
mance evaluations, especially when taking negative-class 
variable c as zero and generating zero p is less likely. To 
make some quantitative evaluations proposed (e.g., under/
over-predictions), class variable c was taken as {1, 2} 
instead of {0, 1}. However, this approach should be con-
sidered a general limitation for probabilistic instruments in 
classification. Therefore, instruments should be defined and 
used to eliminate division-by-zero errors.

The number of example classifications in the simulation 
cases may appear small. However, higher numbers were also 
verified by other experiments conducted separately, and this 
number does not affect the criteria evaluation’s validity. The 
number of examples is sufficient to represent, tabulate, inter-
pret, and understand the criteria’s focus.

7.2  Future works

This study presents a starting point for benchmarking clas-
sification instruments from both qualitative and quantitative 
perspectives. As further research is conducted in this area, 
the following directions could be explored:

• Number of classes: This study focuses on binary clas-
sification. However, the proposed benchmarking method 
could be extended to cover n-ary class classification (ini-
tially trinary classification) to provide a more compre-
hensive evaluation of instruments.

• Simulation tool: The current simulation tool is a 
spreadsheet, which enhances the usability and com-
prehension of the method. However, additional anal-
ysis functionalities could be provided by developing 

a benchmarking API. This would make it possible to 
increase the number of simulation example instances, 
allowing for a more detailed evaluation of classification 
instruments.

• Extending quantitative cases: Incorporating agreements 
(i.e. correlations) among instruments in different cases, 
including the simulation cases proposed in this study, 
could provide additional insights. The initial attempt to 
address this was described with “ensure error measures 
are valid” criteria [25]. Note that this will not affect the 
robustness rank found by BenchMetrics Prob but provide 
similarities in the instruments.

As more research is conducted in the field, further direc-
tions for improvement and extension of the benchmarking 
method can be identified and pursued.

8  Conclusion

This study evaluated probabilistic-based error/loss instru-
ments in classification performance evaluation. These instru-
ments, originally developed for regression, time series fore-
casting, and non-crisp classifiers evaluation, were adapted to 
measure classification performance. While the instruments 
are believed to be reliable in evaluating binary-class classi-
fication performance, not all instruments are equally suitable 
or robust in this context. MSE and RMSE are commonly 
used to evaluate and report the performance of binary classi-
fiers like artificial neural networks, but there are many other 
instruments available, making it unclear which ones are best 
for binary classification performance evaluation.

The study comprehensively evaluates probabilistic error/
loss instruments for binary classification performance eval-
uation. It proposes a two-stage systematic benchmarking 
method, BenchMetrics Prob, to assess the robustness of any 
existing and future probabilistic performance instruments:

• Stage 1 evaluates the instruments based on five qualita-
tive criteria to identify the theoretically expected proper-
ties for binary classification.

• Stage 2 evaluates the instruments based on seven quan-
titative cases that reflect different conditions of a binary 
classifier. The cases are generated using the simulation 
tool provided online.

BenchMetrics Prob tested 31 probabilistic instruments 
and ranked their robustness. The results showed that:

• SSE, a measure in an opened interval [0, ∞), is the most 
robust instrument but has low interpretability.
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• MSE, RMSE as the MSE variant, and MAE metrics with 
a closed interval in [0, 1], are the second most robust 
instrument.

The study also found high variance among error functions 
and aggregation functions for probabilistic error instruments. 
It simplified our understanding by categorizing a large num-
ber of instruments into subtypes and classifying them as main 
or variant instruments. The study also found that uncommon 
aggregation functions had robustness issues in the classifica-
tion context. The instruments proposed as an improvement 
for regression performance evaluation, such as “absolute per-
centage”, “symmetric absolute percentage”, “relative abso-
lute” errors (e.g., MAPE, sMAPE, and MRAE, respectively), 
and LogLoss showed low robustness in classification and 
should be avoided for performance evaluation, comparison, 
and reporting. These results have important implications for 
researchers and practitioners seeking to select appropriate 
evaluation metrics for binary classification.

The choice of robust metrics (MSE, RMSE, and MAE) for 
binary classification evaluation depends on specific goals. 
As elaborated in the Discussion section, MAE is the most 
convenient and robust metric, while RMSE may be preferred 
if the emphasis on larger errors is required. This study's find-
ings on instrument rankings and robustness should guide 
researchers to choose the right probabilistic evaluation met-
rics and contribute to establishing common best practices 
in performance evaluation and reporting. Future research 
could extend BenchMetrics Prob to evaluate the robustness 
of probabilistic performance instruments for multiclass 
classification.

Appendix A: Preliminaries

Classification and Binary Classification: Classification is 
a specific problem in machine learning at which a classi-
fier (i.e. a computer program) improves its performance 
through learning from experience. In a supervised approach, 
the experience is gained by providing labeled examples (i.e. 
training dataset) of one or more classes with common prop-
erties or characteristics. In a binary classification or two-
class classification, a classifier separates an example given 
into two classes. The classes are named positive (e.g., mali-
cious software or spam) and negative (e.g., benign software 
or non-spam) in general.

Classification Performance and Confusion Matrix: The 
performance of the trained classifier (i.e. to what degree it 
predicts the labels of known examples) is then improved or 
evaluated on different labeled examples (i.e. validation or 
test datasets). At this stage, the classifier is supposed to be 
ready to predict the class of additional unknown or unlabeled 

instances. The binary classification performances in train-
ing, validation, or test datasets are presented by a confu-
sion matrix, also known as a “2 × 2 contingency table” or 
“four-fold table”, (i.e. the number of correct and incorrect 
classification per positive and negative classes).

Confusion‑matrix‑derived instruments

Confusion-matrix-derived instruments are a convenient, 
familiar, and frequently used instrument category. Along 
with well-known metrics such as accuracy (ACC ), true 
positive rate (TPR), and F1, other specific metrics such as 
Cohen’s Kappa (CK) [27] and Mathews Correlation Coef-
ficient (MCC) [28] have been used in the evaluation of crisp 
classifiers that assign instances to either a positive (value: 
one) or negative (value: zero) class absolutely (also known 
as “hard label”) [24, 55]. The performance measured by 
these instruments can be interpreted as.

External: They present observed results without an 
explicit connection to internal design parameters. The 
classifier is modeled with a single/final optimum con-
figuration (i.e. a model threshold).
Production-ready: They provide an estimate of the 
classifier’s performance in a production environment 
for the intended problem domain when compared to 
other classifiers.
Kinetic: They represent a classifier’s performance 
summarizing a specific application of the samples of a 
dataset (e.g., the ACC  or MSE values that are measured 
for the first run or iteration in k-fold cross-validation).

Graphical‑based instruments

Graphical-based performance instruments are not based on 
a single instance of confusion-matrix elements yielded from 
a specific application. Instead, they list a classifier’s perfor-
mance panorama by varying a decision threshold (i.e. full 
operating range of a classifier) in terms of metric pairs that 
involve trade-off (e.g., x: FPR and y: TPR for ROC, receiver-
operating-characteristic) [1]. A graph is used to visualize the 
variance and the area under the curve provides a single value 
(e.g., AUCROC, Area-Under-ROC-Curve) to summarize the 
variance [66]. These instruments represent the classifiers’ 
internal capability designed with different possible settings 
and provide insight into the classifiers’ potential during 
model development. However, since a classifier is eventually 
deployed with a single decision threshold in a production 
environment, a confusion-matrix-derived (e.g., ACC ) and/
or a probabilistic error/loss instrument (e.g., MSE) should 
be used and reported to represent the final performance. 
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A graphical-based instrument (e.g., AUCPR) can also be 
included to show the classifiers' potential when used with 
different decision thresholds.

Appendix B

Probabilistic error/loss instruments’ equations

See Table 10.

Appendix C

Probabilistic error instruments aggregation 
and error function frequency distribution

Table 11 lists the frequency distribution of aggregation 
(g) and error (ei) functions described in Table 1. The most 
used aggregation functions are mean and square(d) mean 
and error functions (shown in underlined) are absolute and 
percentage.

Table 10  Instruments’ equations categorized into performance measures and metrics and instrument subtypes

Probabilistic Error/Loss Base Equations

ei = ci − pi (B.1) %ei =
ei

ci
(B.2) Δci = ci − c (B.3)

rel_ei =
ei

Δci
(B.4) sca_ei =

ei

mean

i = 2..Sn
|ci−ci−1|

(B.5) sym_ei =
ei

|ci|+|pi| (B.6)

ci ∈ {0, 1} : ground truth class for ith instance (0 for negative, 1 for positive class),
In LogLoss; pi ∈ [0, 1] scores produced by a model C for each of Sn samples,
In others: p_i = P

(
pi = 1||xi) = C(xi) : predicted class membership score

where pi ≥ � outcome is positive; otherwise, the outcome is negative (decision threshold � in [0, 1])
Probabilistic Error/Loss Measures

LogLoss = −
1

Sn

∑Sn

i
cilog2pi + (1 − ci)log2

�
1 − pi

�
(B.7)

(Relative absolute error measures)

MRAE = mean
i=1..��

||rel_ei|| (B.8) MdRAE = median
i=1..��

||rel_ei|| (B.9) GMRAE = geomean
i=1..��

||rel_ei|| (B.10)

RAE = sum
i=1..��

||rel_ei|| (B.11) RSE = sum
i=1..��

rel_ei
2 (B.12)

(Squared error measures, continued from MSE, RMSE, and MdSE squared error metrics below)

SSE = sum
i=1..��

ei
2 (B.13) nMSEv1 = mean

i=1..��

ei
2

c⋅p
(B.14) nMSEv2 = mean

i=1..��

ei
2

var(c)
(B.15)

nMSEv3 = mean
i=1..��

ei
2

mean
j=1..��

Δcj
2

(B.16) nMSEv4 = mean
i=1..��

ei
2

mean
j=1..��

cj
2

(B.17) nMSEv5 = mean
i=1..��

ei
2

ci⋅pi
(B.18)

Probabilistic Error Metrics
ME = mean

i=1..��
ei (B.19)

(Squared error metrics)

MSE = mean
i=1..��

ei
2 (B.20) RMSE =

√
mean
i=1..��

ei
2 (B.21) MdSE = median

i=1..��
ei
2 (B.22)

(Absolute error metrics)

MAE = mean
i=1..��

||ei|| (B.23)

MdAE = median
i=1..��

||ei|| (B.24) MxAE = max
i=1..��

||ei|| (B.25) GMAE = geomean
i=1..��

||ei|| (B.26)

(Percentage error metrics)
MPE = mean

i=1..��
%ei (B.27) MAPE = mean

i=1..��

||%ei|| (B.28) MdAPE = median
i=1..��

||%ei|| (B.29)

RMSPE =
√

mean
i=1..��

%ei
2 (B.30) RMdSPE =

√
median
i=1..��

%ei
2 (B.31)

(Symmetric percentage error metrics)

sMAPE = mean
i=1..��

||sym_%ei|| (B.32) nsMAPE = mean
i=1..��

|||
sym_%ei

2

||| (B.33)

nsMdAPE = median
i=1..��

|||
sym_%ei

2

||| (B.34)

(Absolute scaled errors for time series forecasting, not applicable for binary classification)
MASE = mean

i=1..��
sca_ei (B.35) MdASE = median

i=1..��
sca_ei (B.36) RMSSE =

√
mean
i=1..��

sca_ei
2 (B.37)
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Appendix D

Introduction to BenchMetrics Prob calculator 
and simulation tool

The BenchMetrics Prob, depicted in Fig. 2, is a spreadsheet-
based tool that is designed to prepare cases for evaluating the 
robustness of probabilistic error/loss instruments. The tool can 
be accessed online at https:// github. com/ gurol/ Bench Metri 
csProb. The user interface of the tool is divided into nine parts:

I. Class label/prediction score values settings
II. Ground truth/prediction input method settings
III. Synthetic dataset instances
IV. Hypothetical classifier predictions
V. Classification examples/outputs/confusions
VI. Confusion matrix and other measures
VII. Performance metrics/measure results
VIII. Different error function results
IX. Probabilistic error/loss performance instrument 
results

Part I. Class label/prediction score values 
settings

The first part of the tool allows the users to define the class 
label and prediction score values. By default, the tool is 
set up for conventional binary classification, as shown 
in Fig. 5a below, where the minimum prediction score 
(min(pi)) for the negative class is set to 0 and the maximum 
prediction score (max(pi)) for the positive class is set to 1.

The decision threshold (class-decision boundary) is set to 
the middle of [0, 1] prediction score interval. However, the 

user can change these values by editing the cells with blue 
text/background color. For example, if the users want to avoid 
division-by-zero errors, they can set min(pi) for the negative 
class to 1, max(pi) for the positive class to 2, and θ = 1.5.

Part II. Ground truth/prediction input 
method settings

In the second part of the tool, shown in Fig. 5b, the users 
can choose between “manual” or “random” input meth-
ods for the ground truth and prediction values. If the users 
select the random input method, the tool will generate 

Fig. 5  a Class label/prediction score values settings (screenshot of BenchMetrics Prob—Part I) b Ground truth/prediction input method settings 
(screenshot of BenchMetrics Prob—Part II)

Fig. 6  Synthetic dataset instances (screenshot of BenchMetrics 
Prob—Part III)

Fig. 7  Hypothetical classifier predictions (screenshot of BenchMet-
rics Prob – Part IV)

https://github.com/gurol/BenchMetricsProb
https://github.com/gurol/BenchMetricsProb
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values according to the class label and prediction score 
values defined in Part I above. The user can also set the 
classifier’s prediction by adjusting TPR and/or TNR to be 
above a given value. If the users set these values to 0.5, the 

tool will generate purely random values. Setting a higher 
value made the classifier predict stratified random values. 
Additionally, the users can specify the number of samples 
(Sn) by defining the starting (e.g., 21) and ending (e.g., 40) 
row numbers in the sheet. Note that refreshing the sheet 
using the SHIFT and F9 shortcut keys will change the ran-
dom values.

Part III. Synthetic dataset instances

Part II of the BenchMetrics Prob tool, shown in Fig. 6, gener-
ates the synthetic dataset instances for evaluation. The dataset 
instances (“i”) are numbered sequentially in the first column, 
starting from 1. In the cells with blue text/background colors 
in the second column, users can manually enter the class 
labels for each instance when the ground truth input method 
is selected as “Manual”. The values should be either 0 or 1 for 
default binary classification problems. When the ground truth 
input method is set to “Random”, automatically generated 

Fig. 9  Confusion matrix and other measures (screenshot of Bench-
Metrics Prob—Part V)

Fig. 10  Performance metrics/measure results (screenshot of BenchMetrics Prob – Part VI)

Fig. 11  Different error function results (screenshot of BenchMetrics Prob—Part VIII)

Fig. 8  Classification examples/outputs (screenshot of BenchMetrics Prob—Part VII)
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random class labels are displayed in the third column. These 
values should not be changed by the users. The total number 
of instances generated can be changed in Part II by adjusting 
the "Number of samples (Sn)" parameter. The formulas should 
be pasted to the rows for the new instances.

Part IV. Hypothetical classifier predictions

The same approach in Part III is applied to the predictions of 
the hypothetical classifier per corresponding synthetic data-
set instances. Figure 7 shows the predictions along with the 
dataset instances where pi values are either manually entered 
in the fourth column (shown in blue text/background) or 
automatically generated in the last column. Note that the tool 
takes the columns according to current “random”/“manual” 
settings shown in Fig. 5b.

Part V. Classification examples/outputs/
confusions

Having generated synthetic dataset examples and corre-
sponding hypothetical classifier’s prediction outputs, Part 
IV summarizes ground truth, predictions, and confusion 
status. Figure 8 shows all possible confusions (e.g., the 
first instance is “positive” but predicted as “outcome nega-
tive” so that the instance is classified as “false negative”).

Part VI. Confusion matrix and other 
measures

Part VI shown in Fig. 9 provides the confusion matrix and 
other measures based on the matrix (total of 15 measures). 
The values summarize the current case’s classification per-
formance as a crisp classifier.

Part VII. Performance metrics/measure 
results

In Part VII, shown in Fig. 10, the tool provides various per-
formance metrics and measures derived from the confusion 
matrix, with a total of 21 instruments. The zero–one loss 
metrics described in Sect. 2.4 are shown in red text color. In 
addition, two measures of classifier model complexity are cal-
culated based on the number of model parameters (k). These 
measures are:

Akaike Information Criterion (AIC): A measure of the 
quality of a model that penalizes models for the number of 
parameters used. Lower AIC values indicate a better model fit.

Bayesian Information Criterion (BIC): Similar to AIC, 
BIC also penalizes models for the number of parameters used. 
However, BIC has a stronger penalty for model complexity 
than AIC. Lower BIC values indicate a better model fit.

The AIC and BIC values can be used to compare different 
models and select the one with the best fit.

Part VIII. Error function results

Part VIII shows the results of error function based on class 
labels (ci) and prediction scores (pi), as shown in Fig. 11. 
Probabilistic error/loss instruments summarize those 
errors listed in rows into a single figure (in Part IX below) 
according to their aggregation functions.

Part IX. Probabilistic error/loss performance 
instrument results

Part IX, shown in Fig. 12, lists the results of probabilistic 
performance instruments for the predictions made on data-
set instances. The instruments are grouped into subtypes 
(shown in black background text).

Note that the current instrument outputs, including 
confusion-matrix-based ones and the configuration set-
ting, are listed in the sixth row in a separate worksheet 
(‘simulation cases’). You can copy and paste the row into 
another row to create a simulation case for your analysis. 

Fig. 12  Probabilistic error/loss performance instrument results (screenshot of BenchMetrics Prob—Part IX)
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The benchmarking results were already provided in this 
sheet per seven cases.

Data availability The datasets generated during and/or analyzed during 
the current study are available in the GitHub repository, https:// github. 
com/ gurol/ Bench Metri csProb.
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