Abstract
This paper presents a data-driven control strategy for nonlinear dynamical systems, which fully exploits the advantages of the Koopman operator in globally linearizing nonlinear dynamical systems. We first generalize the Koopman operator framework to the controlled nonlinear systems, enabling comprehensive linear analysis and control methods to be valid for nonlinear systems. When extracting the Koopman operator approximation from data, model uncertainty always arises due to the variation of the data-driven setting. We next present a hierarchical neural network (HNN) approach to approximate the finite-dimensional Koopman operator representations and construct multiple Koopman-based lifted models for original controlled nonlinear systems in a polytope set construction. Based on that, a robust Koopman-based model predictive control (rKMPC) approach considering state and input constraints is constructed to realize the control of the original nonlinear systems. In particular, we extend the proposed rKMPC framework to a Koopman operator-based reduced-order model, thereby achieving the nonlinear control using only a few given inputs. Finally, several numerical examples and a physical experiment are provided to demonstrate the effectiveness of the proposed data-driven control approach, and numerical comparisons are carried out with existing Koopman-based control methods.




















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- Notation:
-
Expression
- k :
-
Discrete time index.
- \(x_k\) :
-
Original state at the \(k\text {th}\) instant.
- \(u_k\) :
-
Control input at the \(k\text {th}\) instant.
- f :
-
Discrete dynamical map.
- \({\mathcal {M}}\) :
-
Smooth manifold.
- \({\mathcal {H}}\) :
-
Hilbert space.
- \({\mathbb {R}}\) :
-
Real number space.
- \({\mathcal {K}}\) :
-
Koopman operator.
- g :
-
Observable function.
- \(\phi\) :
-
The vector-valued function.
- \(\psi _i\) :
-
The ith lifting function contained in \(\phi\).
- \(z_k\) :
-
Lifted state at the \(k\text {th}\) instant.
- A :
-
State matrix of the lifted linear system.
- B :
-
Control matrix of the lifted linear system.
- C :
-
Output matrix of the lifted linear system.
- \({\tilde{A}}_i\) :
-
The ith vertex matrix corresponding to the matrix A.
- \({\tilde{B}}_i\) :
-
The ith vertex matrix corresponding to the matrix B.
- \(N(x\vert \theta )\) :
-
Representation of the prediction module, where \(\theta\) denotes the network parameters.
- \(L(\theta )\) :
-
Loss function.
- O :
-
The output of each DNN in predictor module and tag module.
- E :
-
The output of each DNN in deviation module.
- \(z_{k+1}\) :
-
Lifted state at the \((k+1)\)th instant, the output of the linear module, initial lifted state estimation.
- \({\bar{z}}_{k+1}\) :
-
The output of the tag module, lifted state tag.
- \(\Delta {z}_k\) :
-
The output of the deviation module, deviation estimation.
- \(\Delta {r}_k\) :
-
Deviation tag.
- \({\hat{z}}_{k+1}\) :
-
Ultimate lifted state estimation.
- X :
-
State constraint set.
- U :
-
Control constraint set.
- \(N_k\) :
-
Prediction steps.
- Q :
-
Cost matrix for the state
- P :
-
Cost matrix for the terminal state.
- R :
-
Cost matrix for the control input.
- \(u_k^*\) :
-
The optimal control rule at the kth instant.
- \(\gamma _1\) :
-
Training episodes.
- \(\gamma _2\) :
-
The number of iterations.
- n :
-
Dimension of the original state.
- m :
-
Dimension of the control input.
- N :
-
Dimension of the lifted state.
- M :
-
Latent dimension of each hidden layer.
- T :
-
Time domain of the training sample (Training time domian), continuous time index.
- \(N_d\) :
-
The number of collected datasets.
- h :
-
The number of vertices of a polytope set.
- \(n_c\) :
-
The number of constant inputs.
- \(\text {diag}(\cdots )\) :
-
A diagnal matrix with elements \(\cdot\).
- \(\text {bdiag}(\cdots )\) :
-
A block diagnal matrix with elements \(\cdot\).
References
Kamb M, Kaiser E, Brunton SL, Kutz JN (2020) Time-delay observables for Koopman: theory and applications. SIAM J Appl Dyn Syst 19(2):886–917. https://doi.org/10.1137/18M1216572
Koopman BO (1931) Hamiltonian systems and transformation in Hilbert space. Proc Natl Acad Sci 17(5):315–318. https://doi.org/10.1073/pnas.17.5.315
Koopman BO, Neumann JV (1932) Dynamical systems of continuous spectra. Proc Natl Acad Sci USA 18(3):255–263. https://doi.org/10.1073/pnas.18.3.255
Brunton SL, Brunton BW, Proctor JL, Nathan KJ, Kestler HA (2016) Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11(2):0150171. https://doi.org/10.1371/journal.pone.0150171
Arbabi H, Korda M, Mezic I (2018) A data-driven Koopman model predictive control framework for nonlinear partial differential equations. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 6409–6414. https://doi.org/10.1109/CDC.2018.8619720
Zhang X, Pan W, Scattolini R, Yu S, Xu X (2022) Robust tube-based model predictive control with Koopman operators. Automatica 137:110114. https://doi.org/10.1016/j.automatica.2021.110114
Lusch B, Kutz J, Brunton S (2018) Deep learning for universal linear embeddings of nonlinear dynamics. Nat Commun 9:4950. https://doi.org/10.1038/s41467-018-07210-0
Schmid PJ, Sesterhenn J (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656(10):5–28. https://doi.org/10.1017/S0022112010001217
Rowley C, Mezic I, Bagheri S, Schlatter P, Henningson DS (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127. https://doi.org/10.1017/S0022112009992059
Kutz JN, Brunton SL, Brunton BW, Proctor JL (2016) Dynamic mode decomposition: data-driven modeling of complex systems. SIAM Press, Berlin
Williams MO, Kevrekidis IG, Rowley CW (2015) A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J Nonlinear Sci 25:1307–1346. https://doi.org/10.1007/s00332-015-9258-5
Noé F, Nüske F (2013) A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model Simul 11(2):635–655. https://doi.org/10.1137/110858616
Kevrekidis I, Rowley C, Williams M (2016) A kernel-based method for data-driven Koopman spectral analysis. J Comput Dyn 2:247–265. https://doi.org/10.3934/jcd.2015005
Yeung E, Kundu S, Hodas N (2019) Learning deep neural network representations for Koopman operators of nonlinear dynamical systems. In: 2019 American Control Conference (ACC), pp. 4832–4839 . https://doi.org/10.23919/ACC.2019.8815339
Otto SE, Rowley CW (2019) Linearly recurrent autoencoder networks for learning dynamics. SIAM J Appl Dyn Syst 18(1):558–593. https://doi.org/10.1137/18M1177846
Li S, Yang Y (2021) Data-driven identification of nonlinear normal modes via physics-integrated deep learning. Nonlinear Dyn 106:3231–3246. https://doi.org/10.1007/s11071-021-06931-0
N N, Chakraborty S (2022) Koopman operator for time-dependent reliability analysis. Eprint Arxiv . https://doi.org/10.48550/ARXIV.2203.02658
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press. http://www.deeplearningbook.org
Wang X, Zhao Y, Pourpanah F (2020) Recent advances in deep learning. Int J Mach Learn Cybern 11:747–750. https://doi.org/10.1007/s13042-020-01096-5
Balcazar R, Rubio JDJ, Orozco E, Andres Cordova D, Ochoa G, Garcia E, Pacheco J, Gutierrez GJ, Mujica-Vargas D, Aguilar-Ibanez C (2022) The regulation of an electric oven and an inverted pendulum. Symmetry 14(4):759. https://doi.org/10.3390/sym14040759
Rubio JDJ, Orozco E, Cordova DA, Islas MA, Pacheco J, Gutierrez GJ, Zacarias A, Soriano LA, Meda-Campana JA, Mujica-Vargas D (2022) Modified linear technique for the controllability and observability of robotic arms. IEEE Access 10:3366–3377. https://doi.org/10.1109/ACCESS.2021.3140160
Villasenor Rios CA, Luviano-Juarez A, Lozada-Castillo NB, Carvajal-Gamez BE, Mujica-Vargas D, Gutierrez-Frias O (2022) Flatness-based active disturbance rejection control for a pvtol aircraft system with an inverted pendular load. Machines 10(7):595. https://doi.org/10.3390/machines10070595
Soriano LA, Rubio JDJ, Orozco E, Cordova DA, Ochoa G, Balcazar R, Cruz DR, Meda-Campana JA, Zacarias A, Gutierrez GJ (2021) Optimization of sliding mode control to save energy in a scara robot. Mathematics 9(24):3160. https://doi.org/10.3390/math9243160
Soriano LA, Zamora E, Vazquez-Nicolas JM, Hernandez G, Barraza Madrigal JA, Balderas D (2020) PD control compensation based on a cascade neural network applied to a robot manipulator. Front Neurorobot 14:2. https://doi.org/10.3389/fnbot.2020.577749
Silva-Ortigoza R, Hernandez-Marquez E, Roldan-Caballero A, Tavera-Mosqueda S, Marciano-Melchor M, Garcia-Sanchez JR, Hernandez-Guzman VM, Silva-Ortigoza G (2021) Sensorless tracking control for a full-bridge buck inverter-DC motor system: passivity and flatness-based design. IEEE Access 9:132191–132204. https://doi.org/10.1109/ACCESS.2021.3112575
Proctor JL, Brunton SL, Kutz JN (2014) Dynamic mode decomposition with control. SIAM J Appl Dyn Syst 15(1):1101–1109. https://doi.org/10.1137/15M1013857
Korda M, Mezic I (2016) Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93:149–160. https://doi.org/10.1016/j.automatica.2018.03.046
Korda M, Mezic I (2020) Optimal construction of Koopman eigenfunctions for prediction and control. IEEE Trans Autom Control 65(12):5114–5129. https://doi.org/10.1109/TAC.2020.2978039
Abraham I, Murphey TD (2019) Active learning of dynamics for data-driven control using Koopman operators. IEEE Trans Rob 35(5):1071–1083. https://doi.org/10.1109/TRO.2019.2923880
Uchida D, Yamashita A, Asama H (2021) Data-driven Koopman controller synthesis based on the extended \(H_2\) norm characterization. IEEE Control Syst Lett 5(5):1795–1800. https://doi.org/10.1109/LCSYS.2020.3042827
Peitz S, Klus S (2019) Koopman operator-based model reduction for switched-system control of PDEs. Automatica 106:184–191. https://doi.org/10.1016/j.automatica.2019.05.016
Proctor JL, Brunton SL, Kutz JN (2016) Generalizing Koopman theory to allow for inputs and control. SIAM J Appl Dyn Syst 17:909–930. https://doi.org/10.1137/16M1062296
Williams MO, Hemati MS, Dawson STM, Kevrekidis IG, Rowley CW (2016) Extending data-driven Koopman analysis to actuated systems. IFAC-Papers OnLine 49(18):704–709. https://doi.org/10.1016/j.ifacol.2016.10.248
Han Y, Hao W, Vaidya U (2020) Deep learning of Koopman representation for control. In: 2020 59th IEEE Conference on Decision and Control (CDC), pp. 1890–1895. https://doi.org/10.1109/CDC42340.2020.9304238
Shi H, Meng MQH (2022) Deep Koopman operator with control for nonlinear systems. IEEE Robot Autom Lett 7(3):7700–7707. https://doi.org/10.1109/LRA.2022.3184036
Bao J, Ye M (2016) Scale invariant constrained deep network for head pose estimation. Adv Model Anal B 59(1):113–130
Takeishi N, Kawahara Y, Yairi T (2017) Learning Koopman invariant subspaces for dynamic mode decomposition. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1130–1140
Ferreau HJ, Kirches C, Potschka A, Bock HG, Diehl M (2014) qpoases: a parametric active-set algorithm for quadratic programming. Math Progr Comput 6:327–363. https://doi.org/10.1007/s12532-014-0071-1
Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: stability and optimality. Automatica 36(6):789–814. https://doi.org/10.1016/S0005-1098(99)00214-9
Limon D, Alamo T, Camacho EF (2003) Stable constrained MPC without terminal constraint. In: Proceedings of the 2003 American Control Conference 6:4893–4898. https://doi.org/10.1109/ACC.2003.1242498
Rawlings J, Mayne DQ, Diehl M (2017) Model predictive control: theory, computation, and design. Madison, WI
Camacho EF, Bordons C (2007) Model predictive control, 2nd edn. Springer, London
Mayne DQ, De Dona JA, Goodwin GC (2000) Improved stabilising conditions for model predictive control. In: Proceedings of the 39th IEEE Conference on Decision and Control 1:172–1771. https://doi.org/10.1109/CDC.2000.912752
Mayne DQ (2001) Control of constrained dynamic systems. Eur J Control 7(2):87–99. https://doi.org/10.3166/ejc.7.87-99
Gilbert EG, Tan KT (1991) Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans Autom Control 36(9):1008–1020. https://doi.org/10.1109/9.83532
Scokaert POM, Rawlings JB (1998) Constrained linear quadratic regulation. IEEE Trans Autom Control 43(8):1163–1169. https://doi.org/10.1109/9.704994
Sznaier M, Damborg MJ (1987) Suboptimal control of linear systems with state and control inequality constraints. In: 26th IEEE Conference on Decision and Control 26:761–762. https://doi.org/10.1109/CDC.1987.272491
Biegler LT (2000) Efficient solution of dynamic optimization and NMPC problems. In: Allgöwer F, Zheng A (eds) Nonlinear model predictive control 26:219–243. https://doi.org/10.1007/978-3-0348-8407-5_13
Leith DJ, Leithead WE (2000) Survey of gain-scheduling analysis and design. Int J Control 73(11):1001–1025. https://doi.org/10.1080/002071700411304
Paszke A, Gross S, Chintala S, Chanan G, Yang E, Devito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in PyTorch. In: 31st Conference on Neural Information Processing Systems
Kingma D, Ba J (2014) Adam: A method for stochastic optimization. In: International Conference on Learning Representations
He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 . https://doi.org/10.1109/ICCV.2015.123
Van der Pol B (1920) A theory of the amplitude of free and forced triode vibrations. Radio Rev 1:701–710
Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Appl Math Sci 42:2. https://doi.org/10.1007/978-1-4612-1140-2
Mayne DQ, Kerrigan EC, van Wyk EJ, Falugi P (2011) Tube-based robust nonlinear model predictive control. Int J Robust Nonlinear Control 21:1341–1353. https://doi.org/10.1002/rnc.1758
Klus S, Nüske F, Peitz S, Niemann JH, Schütte C (2020) Data-driven approximation of the Koopman generator: Model reduction, system identification, and control. Phys D 406:132416. https://doi.org/10.1016/j.physd.2020.132416
Kaiser E, Kutz JN, Brunton SL (2021) Data-driven discovery of Koopman eigenfunctions for control. Mach Learn Sci Technol 2(3):035023. https://doi.org/10.1088/2632-2153/abf0f5
Lu B, Fang Y, Ning S (2017) Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics 47:116–125. https://doi.org/10.1016/j.mechatronics.2017.09.006
Acknowledgements
This work was supported by Natural Science Foundation of Jiangsu Province (BK20201340) and 333 High-level Talents Training Project of Jiangsu Province.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors disclosed no relevant relationships.
Availability of data and materials
The processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, M., Lou, X. & Cui, B. Learning-based robust model predictive control with data-driven Koopman operators. Int. J. Mach. Learn. & Cyber. 14, 3295–3321 (2023). https://doi.org/10.1007/s13042-023-01834-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13042-023-01834-5