Skip to main content
Log in

Robust stability of complex-valued fractional-order neural networks with uncertain parameters based on new integral inequalities

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This paper investigates the stability of complex-valued (CV) fractional-order neural networks with uncertain parameters and neutral-type delay. Firstly, two improved reciprocally convex inequalities (RCIs) and three less-conservative integral inequalities are generalized to the complex-valued domain. Secondly, the existence, uniqueness and delay-independent robust stability conditions of the addressed networks are proposed based on the CV homeomorphism theorem. Thirdly, by constructing a Lyapunov–Krasovskii functional, delay-dependent robust stability conditions of the considered networks are derived by utilizing the improved complex-valued RCIs and integral inequalities. Finally, two simulation examples are given to show the effectiveness and practicality of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aravind RV, Balasubramaniam P (2021) Stochastic stability of fractional-order Markovian jumping complex-valued neural networks with time-varying delays. Neurocomputing 439:122–133

    Article  Google Scholar 

  2. Arena P, Caponetto R, Fortuna L, Porto D (1998) Bifurcation and chaos in noninteger order cellular neural networks. Int J Bifurcat Chaos 8(7):1527–1539

    Article  MATH  Google Scholar 

  3. Arslan E, Narayanan G, Ali MS, Arik S, Saroha S (2020) Controller design for finite-time and fixed-time stabilization of fractional-order memristive complex-valued BAM neural networks with uncertain parameters and time-varying delays. Neural Netw 130:60–74

    Article  MATH  Google Scholar 

  4. Bohner M, Rao VSH, Sanyal S (2011) Global stability of complex-valued neural networks on time scales. Differ Equ Dyn Syst 19(1–2):3–11

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen S, Song Q, Zhao Z, Liu Y, Alsaadi FE (2021) Global asymptotic stability of fractional-order complex-valued neural networks with probabilistic time-varying delays. Neurocomputing 450:311–318

    Article  Google Scholar 

  6. Chen X, Song Q (2013) Global stability of complex-valued neural networks with both leakage time delay and discrete time delay on time scales. Neurocomputing 131:254–264

    Article  Google Scholar 

  7. Chen J, Xu S, Chen W, Zhang B, Ma Q, Zou Y (2016) Two general integral inequalities and their applications to stability analysis for systems with time-varying delay. Int J Robust Nonlinear Control 26:4088–4103

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding Z, Zhang H, Zeng Z, Yang L, Li S (2021) Global dissipativity and quasi-Mittag–Leffler synchronization of factional-order discontinuous complex-valued neural networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3119647

    Article  Google Scholar 

  9. Fang T, Sun J (2014) Stability of complex-valued recurrent neural networks with time-delays. IEEE Trans Neural Netw Learn Syst 25(9):1709–1713

    Article  Google Scholar 

  10. Gahinet P, Nemirovski A, Laub AJ, Chilali M (1995) LMI control toolbox user’s guide (1st version). The MathWorks Inc, Natick

    Google Scholar 

  11. Hirose A (2006) Complex-valued neural networks. Springer, New York

    Book  MATH  Google Scholar 

  12. Hu J, Wang J (2012) Global stability of complex-valued recurrent neural networks with time-delays. IEEE Trans Neural Netw Learn Syst 23(6):853–865

    Article  Google Scholar 

  13. Huang W, Song Q, Zhao Z, Liu Y, Alsaadi FE (2021) Robust stability for a class of fractional-order complex-valued projective neural networks with neutral-type delays and uncertain parameters. Neurocomputing 450:399–410

    Article  Google Scholar 

  14. Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256

    Article  MATH  Google Scholar 

  15. Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, New York

    MATH  Google Scholar 

  16. Li H, Kao Y, Bao H, Chen Y (2022) Uniform stability of complex-valued neural networks of fractional order with linear impulses and fixed time delays. IEEE Trans Neural Netw Learn Syst 33(10):5321–5331

    Article  MathSciNet  Google Scholar 

  17. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  18. Popa C-A (2020) Global µ-stability of neutral-type impulsive complex-valued BAM neural networks with leakage delay and unbounded time-varying delays. Neurocomputing 376:73–94

    Article  Google Scholar 

  19. Rakkiyappan R, Cao J, Velmurugan G (2015) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26(1):84–97

    Article  MathSciNet  MATH  Google Scholar 

  20. Scherer C, Weiland S (2000) Linear matrix inequalities in control, lecture notes. Dutch Institute for Systems and Control, Delft

    Google Scholar 

  21. Seuret A, Gouaisbaut F (2016) Delay-dependent reciprocally convex combination lemma. Rapport LAAS n16006

  22. Shen Y, Liu X (2022) Event-based master–slave synchronization of complex-valued neural networks via pinning impulsive control. Neural Netw 145:374–385

    Article  Google Scholar 

  23. Song C, Cao J (2014) Dynamics in fractional-order neural networks. Neurocomputing 142:494–498

    Article  Google Scholar 

  24. Song Q, Yu Q, Zhao Z, Liu Y, Alsaadi FE (2018) Dynamics of complex-valued neural networks with variable coefficients and proportional delays. Neurocomputing 275:2762–2768

    Article  Google Scholar 

  25. Trigeassou JC, Maamri N, Sabatier J, Oustaloup A (2011) A Lyapunov approach to the stability of fractional differential equations. Signal Process 91(3):437–445

    Article  MATH  Google Scholar 

  26. Velmurugan G, Rakkiyappan R, Lakshmanan S (2015) Passivity analysis of memristor-based complex-valued neural networks with time-varying delays. Neural Process Lett 42(3):517–540

    Article  Google Scholar 

  27. Wang H, Yu Y, Wen G (2014) Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw 55:98–109

    Article  MATH  Google Scholar 

  28. Wang X, Wang Z, Fan Y, Xia J, Shen H (2019) Enhanced global asymptotic stabilization criteria for delayed fractional complex-valued neural networks with parameter uncertainty. Int J Control Autom Syst 17(4):880–895

    Article  Google Scholar 

  29. Wang X, Wang Z, Xia J (2021) Qian Ma, Quantized sampled-data control for exponential stabilization of delayed complex-valued neural networks. Neural Process Lett 53(2):983–1000

    Article  Google Scholar 

  30. Wei X, Zhang Z, Lin C, Chen J (2021) Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays. Appl Math Comput 403:126194

    MathSciNet  MATH  Google Scholar 

  31. Wu F, Huang Y (2022) Finite-time synchronization and H∞ synchronization of coupled complex-valued memristive neural networks with and without parameter uncertainty. Neurocomputing 469:163–179

    Article  Google Scholar 

  32. Wu H, Wang L, Niu P, Wang Yu (2017) Global projective synchronization in finite time of nonidentical fractional-order neural networks based on sliding mode control strategy. Neurocomputing 235:264–273

    Article  Google Scholar 

  33. Yu J, Hu C, Jiang H, Fan X (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95

    Article  MATH  Google Scholar 

  34. Yuan M, Wang W, Wang Z, Luo X, Kurths J (2021) Exponential synchronization of delayed memristor-based uncertain complex-valued neural networks for image protection. IEEE Trans Neural Netw Learn Syst 32(1):151–165

    Article  MathSciNet  Google Scholar 

  35. Zhang F, Zeng Z (2022) Multistability and stabilization of fractional-order competitive neural networks with unbounded time-varying delays. IEEE Trans Neural Netw Learn Syst 33(9):4515–4526

    Article  MathSciNet  Google Scholar 

  36. Zhang X-M, Han Q-L, Seuret A, Gouaisbaut F (2017) An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay. Automatica 84:221–226

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang H, Wang Z, Liu D (2014) A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans Neural Netw Learn Syst 25(7):1229–1262

    Article  Google Scholar 

  38. Zhang H, Liu Z, Huang G, Wang Z (2010) Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay. IEEE Trans Neural Netw 21(1):91–106

    Article  Google Scholar 

  39. Zhang H, Ma T, Huang G, Wang Z (2010) Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans Syst Man Cybern Part B Cybern 40(3):831–844

    Article  Google Scholar 

  40. Yao L, Wang Z, Huang X, Li Y, Ma Q, Shen H (2023) Stochastic sampled-data exponential synchronization of Markovian jump neural networks with time-varying delay. IEEE Trans Neural Netw Learn Syst 34(2):909–920

    Article  MathSciNet  Google Scholar 

  41. Ni Y, Wang Z, Huang X, Ma Q, Shen H (2022) Intermittent sampled-data control for local stabilization of neural networks subject to actuator saturation: a work-interval-dependent functional approach. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2022.3180076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-De Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

This work was supported by the Research Foundation of Department of Education of Liaoning Province (No. LJKZ0476).

Appendices

Appendix 1: Proof of Lemma 3

Set \(P_{j} = P_{j}^{R} + {\rm{i}}P_{j}^{I} ,X_{j} = X_{j}^{R} + {\rm{i}}X_{j}^{I} ,Y_{j} = Y_{j}^{R} + {\rm{i}}Y_{j}^{I} ,\) then \(P_{j}^{H} = P_{j} \Leftrightarrow (P_{j}^{R} )^{{ \top }} = P_{j}^{R} ,(P_{j}^{I} )^{{ \top }} = - P_{j}^{I} ,j = 1,2.\) Applying Lemma 1 to (2) yields

$$\left[ {\begin{array}{*{20}c} {P_{1}^{R} - X_{1}^{R} } & {Y_{1}^{R} } & { - P_{1}^{I} + X_{1}^{I} } & { - Y_{1}^{I} } \\ * & {P_{2}^{R} } & {(Y_{1}^{I} )^{{ \top }} } & { - P_{2}^{I} } \\ * & * & {P_{1}^{R} - X_{1}^{R} } & {Y_{1}^{R} } \\ * & * & * & {P_{2}^{R} } \\ \end{array} } \right] \ge 0,$$

and

$$\left[ {\begin{array}{*{20}c} {P_{1}^{R} } & {Y_{2}^{R} } & { - P_{1}^{I} } & { - Y_{2}^{I} } \\ * & {P_{2}^{R} - X_{2}^{R} } & {(Y_{2}^{I} )^{{ \top }} } & { - P_{2}^{I} + X_{2}^{I} } \\ * & * & {P_{1}^{R} } & {Y_{2}^{R} } \\ * & * & * & {P_{2}^{R} - X_{2}^{R} } \\ \end{array} } \right] \ge 0.$$

That is

$$\left[ {\begin{array}{*{20}c} {P_{1}^{R} - X_{1}^{R} } & { - P_{1}^{I} + X_{1}^{I} } & {Y_{1}^{R} } & { - Y_{1}^{I} } \\ * & {P_{1}^{R} - X_{1}^{R} } & {Y_{1}^{I} } & {Y_{1}^{R} } \\ * & * & {P_{2}^{R} } & { - P_{2}^{I} } \\ * & * & * & {P_{2}^{R} } \\ \end{array} } \right] \ge 0,$$
(16)

and

$$\left[ {\begin{array}{*{20}c} {P_{1}^{R} } & { - P_{1}^{I} } & {Y_{2}^{R} } & { - Y_{2}^{I} } \\ * & {P_{1}^{R} } & {Y_{2}^{I} } & {Y_{2}^{R} } \\ * & * & {P_{2}^{R} - X_{2}^{R} } & { - P_{2}^{I} + X_{2}^{I} } \\ * & * & * & {P_{2}^{R} - X_{2}^{R} } \\ \end{array} } \right] \ge 0.$$
(17)

Based on the definition of \(\begin{array}{*{20}l} {\begin{array}{*{20}l} {\begin{array}{*{20}l} {\begin{array}{*{20}l} {\chi ( \cdot )} \hfill \\ \end{array} } \hfill \\ \end{array} } \hfill \\ \end{array} } \hfill \\ \end{array}\) in Lemma 1, (12) and (13) can be rewritten as

$$\left[ {\begin{array}{*{20}c} {\chi (P_{1} ) - \chi (X_{1} )} & {\chi (Y_{1} )} \\ * & {\chi (P_{2} )} \\ \end{array} } \right] \ge 0,\quad {\rm{and}}\quad \left[ {\begin{array}{*{20}c} {\chi (P_{1} )} & {\chi (Y_{2} )} \\ * & {\chi (P_{2} ) - \chi (X_{2} )} \\ \end{array} } \right] \ge 0.$$

Letting \(z_{j} = z_{j}^{R} + {\rm{i}}z_{j}^{I} \in {\mathbb{C}}^{n} ,\) it follows from the improved RCI [36] that

$$\begin{aligned} & \frac{1}{\alpha }z_{1}^{H} P_{1} z_{1} + \frac{1}{1 - \alpha }z_{2}^{H} P_{2} z_{2} \\ & \quad = \frac{1}{\alpha }\left[ {\begin{array}{*{20}c} {z_{1}^{R} } \\ {z_{1}^{I} } \\ \end{array} } \right]^{{ \top }} \chi (P_{1} )\left[ {\begin{array}{*{20}c} {z_{1}^{R} } \\ {z_{1}^{I} } \\ \end{array} } \right] + \frac{1}{1 - \alpha }\left[ {\begin{array}{*{20}c} {z_{2}^{R} } \\ {z_{2}^{I} } \\ \end{array} } \right]^{{ \top }} \chi (P_{2} )\left[ {\begin{array}{*{20}c} {z_{2}^{R} } \\ {z_{2}^{I} } \\ \end{array} } \right] \\ \end{aligned}$$
$$\ge \left[ {\begin{array}{*{20}c} {z_{1}^{R} } \\ {z_{1}^{I} } \\ {z_{2}^{R} } \\ {z_{2}^{I} } \\ \end{array} } \right]^{{ \top }} \left[ {\begin{array}{*{20}c} {\chi (P_{1} ) + (1 - \alpha )\chi (X_{1} )} & {\alpha \chi (Y_{1} ) + (1 - \alpha )\chi (Y_{2} )} \\ * & {\chi (P_{2} ) + \alpha \chi (X_{2} )} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {z_{1}^{R} } \\ {z_{1}^{I} } \\ {z_{2}^{R} } \\ {z_{2}^{I} } \\ \end{array} } \right]$$
$$\begin{aligned} & \quad = \left[ {\begin{array}{*{20}c} {z_{1}^{R} } \\ {z_{2}^{R} } \\ {z_{1}^{I} } \\ {z_{2}^{I} } \\ \end{array} } \right]^{{ \top }} \left[ {\begin{array}{*{20}c} {P_{1}^{R} + (1 - \alpha )X_{1}^{R} } & {\alpha Y_{1}^{R} + (1 - \alpha )Y_{2}^{R} } \\ * & {P_{2}^{R} + \alpha X_{2}^{R} } \\ * & * \\ * & * \\ \end{array} } \right.\left. {\;\begin{array}{*{20}c} { - P_{1}^{I} - (1 - \alpha )X_{1}^{I} } & { - \alpha Y_{1}^{I} - (1 - \alpha )Y_{2}^{I} } \\ {\alpha (Y_{1}^{I} )^{{ \top }} + (1 - \alpha )(Y_{2}^{I} )^{{ \top }} } & { - P_{2}^{I} - \alpha X_{2}^{I} } \\ {P_{1}^{R} + (1 - \alpha )X_{1}^{R} } & {\alpha Y_{1}^{R} + (1 - \alpha )Y_{2}^{R} } \\ * & {P_{2}^{R} + \alpha X_{2}^{R} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {z_{1}^{R} } \\ {z_{2}^{R} } \\ {z_{1}^{I} } \\ {z_{2}^{I} } \\ \end{array} } \right] \\ & \quad = \left[ {\begin{array}{*{20}c} {z_{1} } \\ {z_{2} } \\ \end{array} } \right]^{H} \left[ {\begin{array}{*{20}c} {P_{1} + (1 - \alpha )X_{1} } & {\alpha Y_{1} + (1 - \alpha )Y_{2} } \\ * & {P_{2} + \alpha X_{2} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {z_{1} } \\ {z_{2} } \\ \end{array} } \right]. \\ \end{aligned}$$

This completes the proof.

Appendix 2: Proof of Lemma 5

We only prove inequalities (7) and (8), inequality (6) can be proved similarly.

Setting \(z(s) = z^{R} (s) + {\rm{i}}z^{I} (s),U = U^{R} + {\rm{i}}U^{I} ,{\varrho }_{j} = {\varrho }_{j}^{R} + {\rm{i}}{\varrho }_{j}^{R} ,\) \(j = 5,6,...,10,\) from Lemma 5 of [7] we have

$$\begin{aligned} & \int_{a}^{b} {\int_{\theta }^{b} z } (s)^{H} Uz(s){\rm{d}}s{\rm{d}}\theta \\ & \quad = \int_{a}^{b} {\int_{\theta }^{b} {\left[ {\begin{array}{*{20}c} {z^{R} (s)} \\ {z^{I} (s)} \\ \end{array} } \right]^{{ \top }} } } \chi (U)\left[ {\begin{array}{*{20}c} {z^{R} (s)} \\ {z^{I} (s)} \\ \end{array} } \right]{\rm{d}}s{\rm{d}}\theta \\ & \quad \ge \frac{1}{2}\left[ {\begin{array}{*{20}c} {{\tilde{\varrho }}_{5} } \\ {{\tilde{\varrho }}_{6} } \\ {{\tilde{\varrho }}_{7} } \\ \end{array} } \right]^{{ \top }} \left[ {\begin{array}{*{20}c} {\chi (U)} & 0 & 0 \\ 0 & {2\chi (U)} & 0 \\ 0 & 0 & {3\chi (U)} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\tilde{\varrho }}_{5} } \\ {{\tilde{\varrho }}_{6} } \\ {{\tilde{\varrho }}_{7} } \\ \end{array} } \right] \\ \end{aligned}$$
$$= \frac{1}{2}\left[ {\begin{array}{*{20}c} {{\varrho }_{5}^{R} } \\ {{\varrho }_{6}^{R} } \\ {{\varrho }_{7}^{R} } \\ {{\varrho }_{5}^{I} } \\ {{\varrho }_{6}^{I} } \\ {{\varrho }_{7}^{I} } \\ \end{array} } \right]^{{ \top }} \left[ {\begin{array}{*{20}c} {U^{R} } & 0 & 0 & { - U^{I} } & 0 & 0 \\ 0 & {2U^{R} } & 0 & 0 & { - 2U^{I} } & 0 \\ 0 & 0 & {3U^{R} } & 0 & 0 & { - 3U^{I} } \\ { - U^{I} } & 0 & 0 & {U^{R} } & 0 & 0 \\ 0 & { - 2U^{I} } & 0 & 0 & {2U^{R} } & 0 \\ 0 & 0 & { - 3U^{I} } & 0 & 0 & {3U^{R} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\varrho }_{5}^{R} } \\ {{\varrho }_{6}^{R} } \\ {{\varrho }_{7}^{R} } \\ {{\varrho }_{5}^{I} } \\ {{\varrho }_{6}^{I} } \\ {{\varrho }_{7}^{I} } \\ \end{array} } \right]$$
$$\begin{aligned} & \quad = \frac{1}{2}\left[ {\begin{array}{*{20}c} {{\varrho }_{5} } \\ {{\varrho }_{6} } \\ {{\varrho }_{7} } \\ \end{array} } \right]^{H} \left[ {\begin{array}{*{20}c} U & 0 & 0 \\ 0 & {2U} & 0 \\ 0 & 0 & {3U} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\varrho }_{5} } \\ {{\varrho }_{6} } \\ {{\varrho }_{7} } \\ \end{array} } \right] \\ & \quad = \frac{1}{2}\sum\limits_{j = 5}^{7} {(j - 4)} {\varrho }_{j}^{H} U{\varrho }_{j} , \\ \end{aligned}$$
$$\begin{aligned} & \int_{a}^{b} {\int_{a}^{\theta } z } (s)^{H} Uz(s){\rm{d}}s{\rm{d}}\theta \\ & \quad = \int_{a}^{b} {\int_{a}^{\theta } {\left[ {\begin{array}{*{20}c} {z^{R} (s)} \\ {z^{I} (s)} \\ \end{array} } \right]^{{ \top }} } } \chi (U)\left[ {\begin{array}{*{20}c} {z^{R} (s)} \\ {z^{I} (s)} \\ \end{array} } \right]{\rm{d}}s{\rm{d}}\theta \\ & \quad \ge \frac{1}{2}\left[ {\begin{array}{*{20}c} {{\tilde{\varrho }}_{8} } \\ {{\tilde{\varrho }}_{9} } \\ {{\tilde{\varrho }}_{10} } \\ \end{array} } \right]^{{ \top }} \left[ {\begin{array}{*{20}c} {\chi (U)} & 0 & 0 \\ 0 & {2\chi (U)} & 0 \\ 0 & 0 & {3\chi (U)} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\tilde{\varrho }}_{8} } \\ {{\tilde{\varrho }}_{9} } \\ {{\tilde{\varrho }}_{10} } \\ \end{array} } \right] \\ \end{aligned}$$
$$= \frac{1}{2}\left[ {\begin{array}{*{20}c} {{\varrho }_{8}^{R} } \\ {{\varrho }_{9}^{R} } \\ {{\varrho }_{10}^{R} } \\ {{\varrho }_{8}^{I} } \\ {{\varrho }_{9}^{I} } \\ {{\varrho }_{10}^{I} } \\ \end{array} } \right]^{{ \top }} \left[ {\begin{array}{*{20}c} {U^{R} } & 0 & 0 & { - U^{I} } & 0 & 0 \\ 0 & {2U^{R} } & 0 & 0 & { - 2U^{I} } & 0 \\ 0 & 0 & {3U^{R} } & 0 & 0 & { - 3U^{I} } \\ { - U^{I} } & 0 & 0 & {U^{R} } & 0 & 0 \\ 0 & { - 2U^{I} } & 0 & 0 & {2U^{R} } & 0 \\ 0 & 0 & { - 3U^{I} } & 0 & 0 & {3U^{R} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\varrho }_{8}^{R} } \\ {{\varrho }_{9}^{R} } \\ {{\varrho }_{10}^{R} } \\ {{\varrho }_{8}^{I} } \\ {{\varrho }_{9}^{I} } \\ {{\varrho }_{10}^{I} } \\ \end{array} } \right]$$
$$\begin{aligned} & \quad = \frac{1}{2}\left[ {\begin{array}{*{20}c} {{\varrho }_{8} } \\ {{\varrho }_{9} } \\ {{\varrho }_{10} } \\ \end{array} } \right]^{H} \left[ {\begin{array}{*{20}c} U & 0 & 0 \\ 0 & {2U} & 0 \\ 0 & 0 & {3U} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\varrho }_{8} } \\ {{\varrho }_{9} } \\ {{\varrho }_{10} } \\ \end{array} } \right] \\ & \quad = \frac{1}{2}\sum\limits_{j = 8}^{10} {(j - 7)} {\varrho }_{j}^{H} U{\varrho }_{j} , \\ \end{aligned}$$

where \({\tilde{\varrho }}_{j} = {\rm{col}}\{ {\varrho }_{j}^{R} ,{\varrho }_{j}^{I} \} ,\) \(j = 5,6,...,10.\) This ends the proof.

Appendix 3: Proof of Theorem 1

Firstly, we verify the existence and uniqueness of the EP. Let

$$H(w) = - C(t)w + [A(t) + B(t)]h(w) + E(t)H(w) + J(t).$$
(18)

Now, we verify that \(H(w)\) is injective on \({\mathbb{C}}^{n} .\) For \(\aleph, {^{-}}\!\!\!{\lambda} \in {\mathbb{C}}^{n}\) with \(\aleph \ne {^{-}}\!\!\!{\lambda},\) we need to prove \(H(\aleph {) \ne }H{(}{^{-}}\!\!\!{\lambda} ).\) From (18), one has

$$H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} ) = - C(t)(\aleph - {^{-}}\!\!\!{\lambda} ) + [A(t) + B(t)][h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )] + E(t)[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )].$$

Thus

$$\begin{aligned} (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} [H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )] & = - (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} C(t)(\aleph - {^{-}}\!\!\!{\lambda} ) \\ & \quad + (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} [A(t) + B(t)][h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )] + (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} E(t)[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]. \\ \end{aligned}$$
(19)

and

$$\begin{aligned} [H(\aleph ) - H({^{-}}\!\!\!{\lambda} )]^{H} P_{1} (\aleph - {^{-}}\!\!\!{\lambda} ) & = - (\aleph - {^{-}}\!\!\!{\lambda} )^{H} C(t)P_{1} (\aleph - {^{-}}\!\!\!{\lambda} ) \\ & \quad + [h(\aleph ) - h({^{-}}\!\!\!{\lambda} )]^{H} [A(t) + B(t)]^{H} P_{1} (\aleph - {^{-}}\!\!\!{\lambda} ) + [H(\aleph ) - H({^{-}}\!\!\!{\lambda} )]^{H} E(t)^{H} P_{1} (\aleph - {^{-}}\!\!\!{\lambda} ). \\ \end{aligned}$$
(20)

In addition, it follows from (18) that

$$\begin{aligned} & [H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]^{H} Q[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )] \\ & \quad = \{ - C(t)(\aleph - {^{-}}\!\!\!{\lambda} ) + [A(t) + B(t)][h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )] + E(t)[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]\}^{H} \\ & \quad { \times }Q\{ - C(t)(\aleph - {^{-}}\!\!\!{\lambda} ) + [A(t) + B(t)][h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )] + E(t)[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]\} . \\ \end{aligned}$$
(21)

Combining (19)–(21) yields

$$\begin{aligned} & {\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} [H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]\} \\ & \quad = (\aleph - {^{-}}\!\!\!{\lambda} )^{H} ( - P_{1} C(t) - C(t)P_{1} )(\aleph - {^{-}}\!\!\!{\lambda} ) + {\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} [A(t) + B(t)][h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )]\} \\ & \quad \quad + {\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} E(t)[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]\} - [H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]^{H} Q[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )] \\ & \quad \quad + ( * )^{H} Q\{ - C(t)(\aleph - {^{-}}\!\!\!{\lambda} ) + [A(t) + B(t)][h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )] + E(t)[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]\} . \\ \end{aligned}$$
(22)

Applying Lemma 3 in [9] and Assumption 1 yields

$$\begin{aligned} & (\aleph - {^{-}}\!\!\!{\lambda} )^{H} ( - P_{1} C(t) - C(t)P_{1} )(\aleph - {^{-}}\!\!\!{\lambda} ) \\ & \quad \le (\aleph - {^{-}}\!\!\!{\lambda} )^{H} ( - P_{1} C - CP_{1} + \nu_{1} N_{C}^{H} N_{C} + \nu_{1}^{ - 1} P_{1} M_{C}^{H} M_{C} P_{1} )(\aleph - {^{-}}\!\!\!{\lambda} ), \\ \end{aligned}$$
(23)
$$\begin{aligned} & {\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} A(t)[h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )]\} \le \nu_{2}^{ - 1} ( * )^{H} M_{A}^{H} P_{1} (\aleph - {^{-}}\!\!\!{\lambda} ) \\ & \quad + \nu_{2} ( * )^{H} N_{A} [h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )] + {\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} A[h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )]\} , \\ \end{aligned}$$
(24)
$$\begin{aligned} & {\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} B(t)[h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )]\} \le \nu_{3}^{ - 1} ( * )^{H} M_{B}^{H} P_{1} (\aleph - {^{-}}\!\!\!{\lambda} ) \\ & \quad + \nu_{3} ( * )^{H} N_{B} [h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )] + {\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} B[h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )]\} , \\ \end{aligned}$$
(25)
$$\begin{aligned} & {\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} E(t)[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]\} \le \nu_{4}^{ - 1} ( * )^{H} M_{E}^{H} P_{1} (\aleph - {^{-}}\!\!\!{\lambda} ) \\ & \quad + \nu_{4} ( * )^{H} N_{E} [H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )] + {\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} E[H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]\} . \\ \end{aligned}$$
(26)

From Assumption 2, one gets

$$0 \le ( * )^{H} KR_{j} K(\aleph - {^{-}}\!\!\!{\lambda} ) - ( * )^{H} R_{j} [h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} )],j = 1,2.$$
(27)

Adding (22)–(27) yields

$${\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} [H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]\} \le \xi^{H} \Pi (t)\xi ,$$
(28)

where \(\xi = {\rm{col}}\{ \aleph - {^{-}}\!\!\!{\lambda} ,h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} ),h(\aleph {) - }h{(}{^{-}}\!\!\!{\lambda} ),H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )\} ,\) and

$$\Pi (t) = \left[ {\begin{array}{*{20}c} {\Pi_{11} (t)} & {P_{1} A - C(t)QA(t)} & {P_{1} B - C(t)QB(t)} & {P_{1} E - C(t)QE(t)} \\ * & {\Pi_{22} (t)} & {A(t)^{H} QB(t)} & 0 \\ * & * & {\Pi_{33} (t)} & 0 \\ * & 0 & 0 & {\Pi_{44} (t)} \\ \end{array} } \right],$$

with \(\Pi_{11} (t) = \Psi_{11}^{0} + \Psi_{11}^{1} + C(t)QC(t),\;\Pi_{22} (t) = \nu_{2} N_{A}^{H} N_{A} + A(t)^{H} QA(t) - R_{1} ,\;\Pi_{33} (t) = \nu_{3} N_{B}^{H} N_{B} + B(t)^{H}\)\(QB(t) - R_{2} ,\;\Pi_{44} (t) = \nu_{4} N_{E}^{H} N_{E} + E(t)^{H} QE(t) - Q,\) and \(\Psi_{11}^{1} = \nu_{1}^{ - 1} P_{1} M_{C} M_{C} P_{1} + \nu_{2}^{ - 1} P_{1} M_{A} M_{A}^{H} P_{1} + \nu_{3}^{ - 1} P_{1} M_{B}\)\(M_{B}^{H} P_{1} + \nu_{4}^{ - 1} P_{1} M_{E} M_{E}^{H} P_{1} .\)

Applying the SCL and (9) gives

$$\left[ {\begin{array}{*{20}c} {\tilde{\Psi }_{11} } & {\Psi_{12} } & 0 & {\tau N^{H} } \\ * & { - Q} & {QM} & 0 \\ 0 & * & { - \tau I} & 0 \\ * & 0 & 0 & { - \tau I} \\ \end{array} } \right] < 0,$$
(29)

where

$$\tilde{\Psi }_{11} = \left[ {\begin{array}{*{20}c} {\Psi_{11}^{0} + \Psi_{11}^{1} } & {P_{1} A} & {P_{1} B} & {P_{1} E} \\ * & {\nu_{2} N_{A}^{H} N_{A} - R_{1} } & 0 & 0 \\ * & 0 & {\nu_{3} N_{B}^{H} N_{B} - R_{2} } & 0 \\ * & 0 & 0 & {\nu_{4} N_{E}^{H} N_{E} - Q} \\ \end{array} } \right].$$

Again applying the SCL and (29) yields

$$\left[ {\begin{array}{*{20}c} {\tilde{\Psi }_{11} } & {\Psi_{12} } \\ * & { - Q} \\ \end{array} } \right] + \tau^{ - 1} \left[ {\begin{array}{*{20}c} 0 \\ {QM} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 \\ {QM} \\ \end{array} } \right]^{H} + \tau \left[ {\begin{array}{*{20}c} {N^{H} } \\ 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {N^{H} } \\ 0 \\ \end{array} } \right]^{H} < 0.$$
(30)

From Assumption 1, Lemma 3 in [9] and (30), one has

$$\begin{gathered} \left[ {\begin{array}{*{20}c} {\tilde{\Psi }_{11} } & {\Psi_{12} } \\ * & { - Q} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 \\ {QM} \\ \end{array} } \right]F(t)\left[ {\begin{array}{*{20}c} 0 \\ {QM} \\ \end{array} } \right]^{H} + \left[ {\begin{array}{*{20}c} {N^{H} } \\ 0 \\ \end{array} } \right]F(t)^{H} \left[ {\begin{array}{*{20}c} {N^{H} } \\ 0 \\ \end{array} } \right]^{H} \hfill \\ \le \left[ {\begin{array}{*{20}c} {\tilde{\Psi }_{11} } & {\Psi_{12} } \\ * & { - Q} \\ \end{array} } \right] + \tau^{ - 1} \left[ {\begin{array}{*{20}c} 0 \\ {QM} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} 0 \\ {QM} \\ \end{array} } \right]^{H} + \tau \left[ {\begin{array}{*{20}c} {N^{H} } \\ 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {N^{H} } \\ 0 \\ \end{array} } \right]^{H} < 0, \hfill \\ \end{gathered}$$

that is

$$\left[ {\begin{array}{*{20}c} {\tilde{\Psi }_{11} } & {\Psi_{12} + N^{H} F(t)^{H} M^{H} Q} \\ * & { - Q} \\ \end{array} } \right] < 0,$$

where \(F(t) = {\rm{diag}}\{ F_{C} (t),F_{A} (t),F_{B} (t),F_{E} (t)\} .\)

Again using the SCL gives

$$\Pi (t) = \tilde{\Psi }_{11} + ( * )^{H} Q[\Psi_{12}^{H} + QMF(t)N] < 0.$$
(31)

As \(\xi \ne 0\) and \(\aleph \ne {^{-}}\!\!\!{\lambda} ,\) from (28) and (31) one has

$${\rm{sym}}\{ (\aleph - {^{-}}\!\!\!{\lambda} )^{H} P_{1} [H(\aleph {) - }H{(}{^{-}}\!\!\!{\lambda} )]\} < 0,$$

which means \(H(\aleph {)} \ne H{(}{^{-}}\!\!\!{\lambda} ).\) Thus \(H(w)\) is injective on \({\mathbb{C}}^{n} .\)

Next, we assure \(||H(w)|| \mapsto \infty\) as \(||w|| \mapsto \infty .\) Similar to the proof of (28), it is easy to get

$${\rm{sym}}\{ w^{H} P_{1} [H(w{) - }H{(}0)]\} \le \ell^{H} \Pi (t)\ell ,$$
(32)

where \(\ell = {\rm{col}}\{ w,h(w{) - }h{(}0),h(w{) - }h{(}0),H(w{) - }H{(}0)\} .\)

Applying (32) and Lemma 2 in [9] gives

$$\ell^{H} \Pi (t)\ell \le - \lambda_{\min } ( - \Pi (t))||\ell ||^{2} \le - \lambda_{\min } ( - \Pi (t))||w||^{2} ,$$

thus one has

$$\begin{aligned} & \lambda_{\min } ( - \Pi (t))||w||^{2} \le - {\rm{sym}}\{ w^{H} P_{1} [H(w{) - }H{(}0)]\} \\ & \quad = - 2{\rm{Re}} \{ w^{H} P_{1} [H(w{) - }H{(}0)]\} \\ & \quad \le 2|w^{H} P_{1} [H(w{) - }H{(}0)] \\ & \quad \le 2||w|| \cdot ||P_{1} || \cdot ||H(w{) - }H{(}0) \\ & \quad \le 2||w|| \cdot ||P_{1} || \cdot (||H(w{)}|| + ||H{(}0). \\ \end{aligned}$$

That is

$$||H(w{)}|| \ge \frac{1}{{2||P_{1} ||}}\lambda_{\min } ( - \Pi (t))||w||^{2} - ||H{(}0)||.$$

Therefore, \(||H(w)|| \mapsto \infty\) as \(||w|| \mapsto \infty .\) From Lemma 5 in [9], one ensures that \(H(w)\) is homeomorphic on \({\mathbb{C}}^{n} ,\) which concludes that system (1) has unique EP.

Finally, we prove the GRS of EP. Let \(\overline{w} = [\overline{w}_{1} ,\overline{w}_{2} ,...,\overline{w}_{n} ]^{{ \top }}\) be the EP for system (1) and \(z(t) = w(t) - \overline{w},\) then (1) can be rewritten as

$$D^{\alpha } z(t) = - C(t)z_{t} + A(t)f(z_{t} ) + B(t)f(z_{\sigma } ) + E(t)D^{\alpha } z(t - \upsilon ),$$
(33)

where \(\sigma = \sigma (t),z_{t} = z(t),z_{\sigma } = z(t - \sigma (t)),z_{{\overline{\sigma }}} = z(t - \overline{\sigma }),f(z_{t} ) = h(z_{t} + \overline{w}) - h(\overline{w}).\)

From Assumption 2, one gets

$$0 \le z_{t}^{H} KR_{1} Kz_{t} - f(z_{t} )^{H} R_{1} f(z_{t} ),$$
(34)
$$0 \le z_{\sigma }^{H} KR_{2} Kz_{\sigma } - f(z_{\sigma } )^{H} R_{2} f(z_{\sigma } ).$$
(35)

Consider the following LKF

$$\overline{V}(z_{t} ,t) = \sum\limits_{j = 1}^{2} {V_{j} } (z_{t} ,t) + \frac{1}{{1 - \sigma_{d} }}\int_{t - \sigma }^{t} {( * )^{H} KR_{2} Kz(s){\rm{d}}s} ,$$

with \(V_{1} (z_{t} ,t) = \int_{0}^{\infty } {\varepsilon (\gamma )Z(\gamma ,t)^{H} P_{1} Z(\gamma ,t){\rm{d}}\gamma } ,V_{2} (z_{t} ,t) = \int_{t - \upsilon }^{t} {( * )^{H} Q(D^{\alpha } z(s)){\rm{d}}s} .\)

Because \(\varepsilon (\gamma ) > 0\) for any \(\gamma > 0\), \(V_{1} (z_{t} ,t) \ge 0.\) That is \(\overline{V}(z_{t} ,t) \ge 0\) for any \(\gamma > 0.\)

Calculation yields

$$\begin{gathered} \dot{\overline{V}}(z_{t} ,t) = \sum\limits_{j = 1}^{2} {\dot{V}_{j} } (z_{t} ,t) + \frac{1}{{1 - \sigma_{d} }}z_{t}^{H} KR_{2} Kz_{t} - \frac{{1 - \dot{\sigma }(t)}}{{1 - \sigma_{d} }}z_{\sigma }^{H} KR_{2} Kz_{\sigma } \hfill \\ \le \sum\limits_{j = 1}^{2} {\dot{V}_{j} } (z_{t} ,t) + \frac{1}{{1 - \sigma_{d} }}z_{t}^{H} KR_{2} Kz_{t} - z_{\sigma }^{H} KR_{2} Kz_{\sigma } . \hfill \\ \end{gathered}$$
(36)

By Lemma 2 it follows that

$$\begin{gathered} \dot{V}_{1} (z_{t} ,t) = 2\int_{0}^{\infty } {\varepsilon (\gamma )Z(\gamma ,t)^{H} P_{1} \frac{\partial Z(\gamma ,t)}{{\partial t}}{\rm{d}}\gamma } \hfill \\ \quad \quad \quad = 2\int_{0}^{\infty } {\varepsilon (\gamma )Z(\gamma ,t)^{H} P_{1} [ - \gamma Z(\gamma ,t) + D^{\alpha } z(t)]{\rm{d}}\gamma } \hfill \\ \quad \quad \quad = - 2\int_{0}^{\infty } {\gamma \varepsilon (\gamma )Z(\gamma ,t)^{H} P_{1} Z(\gamma ,t){\rm{d}}\gamma } + 2z(t)^{H} P_{1} (D^{\alpha } z(t)). \hfill \\ \end{gathered}$$

As \(P_{1} > 0,\int_{0}^{\infty } {\gamma \varepsilon (\gamma )Z(\gamma ,t)^{H} P_{1} Z(\gamma ,t){\rm{d}}\gamma } \ge 0.\) Thus one has

$$\begin{aligned} \dot{V}_{1} (z_{t} ,t) & \le 2z(t)^{H} P_{1} (D^{\alpha } z(t)) \\ & = 2z(t)^{H} P_{1} [ - C(t)z_{t} + A(t)f(z_{t} ) + B(t)f(z_{\sigma } ) + E(t)D^{\alpha } z(t - \upsilon )], \\ \end{aligned}$$
(37)
$$\begin{aligned} \dot{V}_{2} (z_{t} ,t) & = ( * )^{H} Q(D^{\alpha } z(t)) - ( * )^{H} Q(D^{\alpha } z(t - \upsilon )) \\ & = ( * )^{H} Q[ - C(t)z_{t} + A(t)f(z_{t} ) + B(t)f(z_{\sigma } ) + E(t)D^{\alpha } z(t - \upsilon )] - ( * )^{H} Q(D^{\alpha } z(t - \upsilon )). \\ \end{aligned}$$
(38)

Similar to (20)-(23), combining (31)-(35) gives

$$\dot{\overline{V}}(z_{t} ,t) \le v(t)^{H} \Pi (t)v(t)\quad {\rm{and}}\quad v(t) = {\rm{col}}\{ z_{t} ,f(z_{t} ),f(z_{\sigma } ),D^{\alpha } z(t - \upsilon )\} .$$

Applying (31) gives that the unique EP of system (1) is GRS.

Appendix 4: Some parameters of Theorem 2

$$\begin{aligned} \Omega & = \sum\limits_{j = 1}^{6} {\Omega_{j} } , \\ \Omega_{1} & = \mu_{13}^{{ \top }} Q\mu_{13} - \mu_{14}^{{ \top }} Q\mu_{14} + {\rm{sym}}\{ \mu_{13}^{{ \top }} G^{H} ( - \mu_{13} - C\mu_{1} + A\mu_{4} + B\mu_{5} + E\mu_{14} )\} \\ & \quad + \nu_{1} \mu_{1}^{{ \top }} N_{C}^{H} N_{C} \mu_{1} + \nu_{2} \mu_{4}^{{ \top }} N_{A}^{H} N_{A} \mu_{4} + \nu_{3} \mu_{5}^{{ \top }} N_{B}^{H} N_{B} \mu_{5} + \nu_{4} \mu_{14}^{{ \top }} N_{E}^{H} N_{E} \mu_{14} , \\ \Omega_{2} & = ( * )^{H} ({\mathbf{\mathbb{Q}}}_{1} + {\mathbf{\mathbb{Q}}}_{2} ){\rm{col}}\{ \mu_{1} ,\mu_{4} \} - {(}1 - \sigma_{d} {)}( * )^{H} {\mathbf{\mathbb{Q}}}_{1} {\rm{col}}\{ \mu_{2} ,\mu_{5} \} - ( * )^{H} {\mathbf{\mathbb{Q}}}_{2} {\rm{col}}\{ \mu_{3} ,\mu_{6} \} {,} \\ \Omega_{3} & = {\rm{sym}}\{ (\mu_{1} - \mu_{3} )^{{ \top }} P_{2} (\mu_{7} - \mu_{9} )\} + \mu_{1}^{{ \top }} (P_{3} + \overline{\sigma }^{2} P_{4} )\mu_{1} - z_{{\overline{\sigma }}}^{H} P_{3} z_{{\overline{\sigma }}} - \eta_{1}^{{ \top }} {\mathbf{\mathbb{P}}}_{4} \eta_{1} - \eta_{2}^{{ \top }} {\mathbf{\mathbb{P}}}_{4} \mu_{2} , \\ \Omega_{4} & = \tfrac{1}{2}\overline{\sigma }^{2} \mu_{1}^{{ \top }} (P_{5} + P_{6} )\mu_{1} - \tfrac{1}{2}\mu_{9}^{{ \top }} P_{5} \mu_{9} - 4( * )^{{ \top }} P_{5} (\mu_{9} - \mu_{11} ) - \tfrac{1}{2}\mu_{10}^{{ \top }} P_{5} \mu_{10} - 4( * )^{{ \top }} P_{5} (\mu_{10} - \mu_{12} ) \\ & \quad - \tfrac{1}{2}( * )^{{ \top }} P_{6} (2\mu_{7} - \mu_{9} ) - 4( * )^{{ \top }} P_{6} (\mu_{7} - 2\mu_{9} + \mu_{11} ) - \tfrac{1}{2}( * )^{{ \top }} P_{6} (2\mu_{8} - \mu_{10} ) - 4( * )^{{ \top }} P_{6} (\mu_{8} - 2\mu_{10} + \mu_{12} ), \\ \Omega_{5} & = \mu_{1}^{{ \top }} KR_{1} K\mu_{1} - \mu_{4}^{{ \top }} R_{1} \mu_{4} + \mu_{2}^{{ \top }} KR_{2} K\mu_{2} - \mu_{5}^{{ \top }} R_{2} \mu_{5} + \mu_{3}^{{ \top }} KR_{3} K\mu_{3} - \mu_{6}^{{ \top }} R_{3} \mu_{6} , \\ \end{aligned}$$
$$\begin{aligned} \Omega_{6} & = - ( * )^{{ \top }} KR_{4} K(\mu_{1} - \mu_{2} ) - ( * )^{{ \top }} R_{4} (\mu_{4} - \mu_{5} ) \\ & \quad - ( * )^{{ \top }} KR_{5} K(\mu_{1} - \mu_{3} ) - ( * )^{{ \top }} R_{5} (\mu_{4} - \mu_{6} ) - ( * )^{{ \top }} KR_{6} K(\mu_{2} - \mu_{3} ) - ( * )^{{ \top }} R_{6} (\mu_{5} - \mu_{6} ). \\ \end{aligned}$$

Appendix 5: Proof of Theorem 2

Consider the following LKF:

$$V(z_{t} ,t) = \sum\limits_{j = 1}^{5} {V_{j} } (z_{t} ,t),$$

with

$$\begin{aligned} V_{3} (z_{t} ,t) & = \int_{t - \sigma }^{t} {( * )^{H} {\mathbf{\mathbb{Q}}}_{1} \varpi {(}s{\rm{)d}}} s + \int_{{t - \overline{\sigma }}}^{t} {( * )^{H} {\mathbf{\mathbb{Q}}}_{2} \varpi {(}s{\rm{)d}}} s, \\ V_{4} (z_{t} ,t) & = ( * )^{H} P_{2} \int_{{t - \overline{\sigma }}}^{t} {z_{s} {\rm{d}}} s + \int_{{t - \overline{\sigma }}}^{t} {z_{s}^{H} P_{3} z_{s} {\rm{d}}} s + \overline{\sigma }\int_{{t - \overline{\sigma }}}^{t} {\int_{\theta }^{t} {z_{s}^{H} P_{4} z_{s} {\rm{d}}} s{\rm{d}}} \theta , \\ V_{5} (z_{t} ,t) & = \int_{{t - \overline{\sigma }}}^{t} {\int_{u}^{t} {\int_{\theta }^{t} {z_{s}^{H} P_{5} z_{s} {\rm{d}}} s} {\rm{d}}} \theta {\rm{d}}u + \int_{{t - \overline{\sigma }}}^{t} {\int_{{t - \overline{\sigma }}}^{u} {\int_{\theta }^{t} {z_{s}^{H} P_{6} z_{s} {\rm{d}}} s} {\rm{d}}} \theta {\rm{d}}u, \\ \end{aligned}$$

where \(\varpi (s) = {\rm{col}}\{ z_{s} ,f(z_{s} )\}\) and \(V_{j} (z_{t} ,t)(j = 1,2)\) are defined in Theorem 1.

Calculation gives

$$\dot{V}(z_{t} ,t) = \sum\limits_{j = 1}^{5} {\dot{V}_{j} } (z_{t} ,t).$$
(39)

where

$$\dot{V}_{3} (z_{t} ,t) = ( * )^{H} ({\mathbf{\mathbb{Q}}}_{1} + {\mathbf{\mathbb{Q}}}_{2} )\varpi {(}t{)} - [1 - \dot{\sigma }{(}t{)}]( * )^{H} {\mathbf{\mathbb{Q}}}_{1} \varpi {(}t - \sigma {(}t{))} - ( * )^{H} {\mathbf{\mathbb{Q}}}_{2} \varpi {(}t - \overline{\sigma }{)},$$
(40)
$$\dot{V}_{4} (z_{t} ,t) = 2(z_{t} - z_{{\overline{\sigma }}} )^{H} P_{2} {(}\beta_{1t} + \beta_{2t} {)} + z_{t}^{H} (P_{3} + \overline{\sigma }^{2} P_{4} )z_{t} - z_{{\overline{\sigma }}}^{H} P_{3} z_{{\overline{\sigma }}} - \overline{\sigma }\int_{{t - \overline{\sigma }}}^{t} {z_{s}^{H} P_{4} z_{s} {\rm{d}}s} ,$$
(41)
$$\dot{V}_{5} (z_{t} ,t) = \frac{{\overline{\sigma }^{2} }}{2}z_{t}^{H} (P_{5} + P_{6} )z_{t} - \int_{{t - \overline{\sigma }}}^{t} {\int_{\theta }^{t} {z_{s}^{H} P_{5} z_{s} {\rm{d}}s} {\rm{d}}\theta } - \int_{{t - \overline{\sigma }}}^{t} {\int_{{t - \overline{\sigma }}}^{\theta } {z_{s}^{H} P_{6} z_{s} {\rm{d}}s} {\rm{d}}\theta } .$$
(42)

Set \(\beta_{1t} = \int_{t - \sigma }^{t} {z_{\theta } {\rm{d}}\theta } ,\;\beta_{2t} = \int_{{t - \overline{\sigma }}}^{t - \sigma } {z_{\theta } {\rm{d}}\theta } ,\;\beta_{3t} = \frac{2}{\sigma }\int_{t - \sigma }^{t} {\int_{s}^{t} {z_{\theta } {\rm{d}}\theta } } {\rm{d}}s,\;\beta_{4t} = \frac{2}{{\overline{\sigma } - \sigma }}\int_{{t - \overline{\sigma }}}^{t - \sigma } {\int_{s}^{t - \sigma } {z_{\theta } {\rm{d}}\theta } } {\rm{d}}s,\)\(\beta_{5t} = \frac{6}{{\sigma^{2} }}\int_{t - \sigma }^{t} {\int_{s}^{t} {\int_{u}^{t} {z_{\theta } } {\rm{d}}\theta {\rm{d}}} } u{\rm{d}}s,\;\beta_{6t} = \frac{6}{{(\overline{\sigma } - \sigma )^{2} }}\int_{{t - \overline{\sigma }}}^{t - \sigma } {\int_{s}^{t - \sigma } {\int_{u}^{t - \sigma } {z_{\theta } } {\rm{d}}\theta {\rm{d}}} } u{\rm{d}}s.\)

Utilizing the mean-value Theorem for integral gives

$$\mathop {\lim }\limits_{{\sigma \to 0^{ + } }} \beta_{{(2{\jmath } - 1)t}} = \;\mathop {\lim }\limits_{{\sigma \to \overline{\sigma }^{ - } }} \beta_{{(2{\jmath })t}} = 0,\;{\jmath } = 2,3.$$

Therefore \(\beta_{3t} ,\;\beta_{4t} ,\beta_{5t} ,\;\beta_{6t}\) are well defined if we set

$$\begin{array}{*{20}l} {\beta_{{(2{\jmath } - 1)t}} |_{\sigma = 0} = \beta_{{(2{\jmath })t}} |_{{\sigma = \overline{\sigma }}} = 0,\;{\jmath } = 2,3.} \hfill \\ \end{array}$$

Denoting \(\iota (t) = \sigma/{\overline{\sigma }} ,\) when \(0 < \sigma < \overline{\sigma },\) applying Lemma 5 yields

$$\begin{aligned} \overline{\sigma }\int_{t - \sigma }^{t} {z_{s}^{H} P_{4} z_{s} {\rm{d}}s} & \ge \frac{{\overline{\sigma }}}{\sigma }[( * )^{H} P_{4} \beta_{1t} + 3( * )^{H} P_{4} (\beta_{1t} - \beta_{3t} ) + 5( * )^{H} P_{4} (\beta_{1t} - 3\beta_{3t} + 2\beta_{5t} )] \\ & = \frac{1}{\iota (t)}\varphi (t)^{H} (\eta_{1}^{{ \top }} {\mathbf{\mathbb{P}}}_{4} \eta_{1} )\varphi (t), \\ \end{aligned}$$
(43)
$$\begin{aligned} \overline{\sigma }\int_{{t - \overline{\sigma }}}^{t - \sigma } {z_{s}^{H} P_{4} z_{s} {\rm{d}}s} & \ge \frac{{\overline{\sigma }}}{{\overline{\sigma } - \sigma }}[( * )^{H} P_{4} \beta_{2t} + 3( * )^{H} P_{4} (\beta_{2t} - \beta_{4t} ) + 5( * )^{H} P_{4} (\beta_{2t} - 3\beta_{4t} + 2\beta_{6t} )] \\ & = \frac{1}{1 - \iota (t)}\varphi (t)^{H} (\eta_{2}^{{ \top }} {\mathbf{\mathbb{P}}}_{4} \eta_{2} )\varphi (t). \\ \end{aligned}$$
(44)

It is obviously that

$$\int_{{t - \overline{\sigma }}}^{t} {\int_{\theta }^{t} {z_{s}^{H} P_{5} z_{s} {\rm{d}}s} {\rm{d}}\theta } = \int_{t - \sigma }^{t} {\int_{\theta }^{t} {z_{s}^{H} P_{5} z_{s} {\rm{d}}s} {\rm{d}}\theta + (\overline{\sigma } - \sigma )} \int_{t - \sigma }^{t} {z_{s}^{H} P_{5} z_{s} {\rm{d}}s} + \int_{{t - \overline{\sigma }}}^{t - \sigma } {\int_{\theta }^{t - \sigma } {z_{s}^{H} P_{5} z_{s} {\rm{d}}s} {\rm{d}}\theta } ,$$
(45)
$$\int_{{t - \overline{\sigma }}}^{t} {\int_{{t - \overline{\sigma }}}^{\theta } {z_{s}^{H} P_{6} z_{s} {\rm{d}}s} {\rm{d}}\theta } = \int_{t - \sigma }^{t} {\int_{t - \sigma }^{\theta } {z_{s}^{H} P_{6} z_{s} {\rm{d}}s} {\rm{d}}\theta } + \sigma \int_{{t - \overline{\sigma }}}^{t - \sigma } {z_{s}^{H} P_{6} z_{s} {\rm{d}}s} + \int_{{t - \overline{\sigma }}}^{t - \sigma } {\int_{{t - \overline{\sigma }}}^{\theta } {z_{s}^{H} P_{6} z_{s} {\rm{d}}s} {\rm{d}}\theta } .$$
(46)

When \(0 < \sigma < \overline{\sigma },\) applying Lemma 5 yields

$$\int_{t - \sigma }^{t} {\int_{\theta }^{t} {z_{s}^{H} P_{5} z_{s} {\rm{d}}s} {\rm{d}}\theta } \ge \frac{1}{2}\beta_{3t}^{H} P_{5} \beta_{3t} + 4( * )^{H} P_{5} (\beta_{3t} - \beta_{5t} ),$$
(47)
$$(\overline{\sigma } - \sigma )\int_{t - \sigma }^{t} {z_{s}^{H} P_{5} z_{s} {\rm{d}}s} \ge [1/ \iota (t)-1 ] \varphi (t)^{H} (\eta_{1}^{{ \top }} {\mathbf{\mathbb{P}}}_{5} \eta_{1} )\varphi (t),$$
(48)
$$\int_{{t - \overline{\sigma }}}^{t - \sigma } {\int_{\theta }^{t - \sigma } {z_{s}^{H} P_{5} z_{s} {\rm{d}}s} {\rm{d}}\theta } \ge \frac{1}{2}\beta_{4t}^{H} P_{5} \beta_{4t} + 4( * )^{H} P_{5} (\beta_{4t} - \beta_{6t} ),$$
(49)
$$\int_{t - \sigma }^{t} {\int_{t - \sigma }^{\theta } {z_{s}^{H} P_{6} z_{s} {\rm{d}}s} {\rm{d}}\theta } \ge \frac{1}{2}( * )^{H} P_{6} (2\beta_{1t} - \beta_{3t} ) + 4( * )^{H} P_{6} (\beta_{1t} - 2\beta_{3t} + \beta_{5t} ),$$
(50)
$$\sigma \int_{{t - \overline{\sigma }}}^{t - \sigma } {z_{s}^{H} P_{6} z_{s} {\rm{d}}s} \ge \left( {\frac{1}{1 - \iota (t)} - 1} \right)\varphi (t)^{H} (\eta_{2}^{{ \top }} {\mathbf{\mathbb{P}}}_{6} \eta_{2} )\varphi (t),$$
(51)
$$\int_{{t - \overline{\sigma }}}^{t - \sigma } {\int_{{t - \overline{\sigma }}}^{\theta } {z_{s}^{H} P_{6} z_{s} {\rm{d}}s} {\rm{d}}\theta \ge \frac{1}{2}( * )^{H} P_{6} (2\beta_{2t} - \beta_{4t} ) + 4( * )^{H} P_{6} (\beta_{2t} - 2\beta_{4t} + \beta_{6t} )} .$$
(52)

By Lemma 4 one gets

$$\begin{aligned} & \frac{1}{{\iota (t)}}( * )^{H} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} )\eta _{1} \varphi (t) + \frac{1}{{1 - \iota (t)}}( * )^{H} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} )\eta _{2} \varphi (t) \\ & \quad = ( * )^{H} \left( {\begin{array}{*{20}c} {({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} )/\iota (t)} & 0 \\ 0 & {({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} )/[1 - \iota (t)]} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\eta _{1} } \\ {\eta _{2} } \\ \end{array} } \right)\varphi (t) \\ & \quad \ge ( * )^{{ \top }} \left( {\begin{array}{*{20}c} {{\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} + [1 - \iota (t)]{\mathbf{\mathbb{W}}}_{1} } & {\iota (t)Y_{1} + [1 - \iota (t)]Y_{2} } \\ * & {{\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} + \iota (t){\mathbf{\mathbb{W}}}_{2} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\eta _{1} } \\ {\eta _{2} } \\ \end{array} } \right)\varphi (t), \\ \end{aligned}$$
(53)

where \({\mathbf{\mathbb{W}}}_{1} = {\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} - Y_{1} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} )^{ - 1} Y_{1}^{H} ,\,{\mathbf{\mathbb{W}}}_{2} = {\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} - Y_{2}^{H} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} )^{ - 1} Y_{2} .\)

From Assumption 2, the following inequalities are true

$$\begin{aligned} & \vartheta_{q} (w) \triangleq w^{H} KR_{q} Kw - ( * )^{H} R_{q} f(w) \ge 0, \\ & \zeta_{r} (w,\ell ) \triangleq ( * )^{H} KR_{3 + r} K(w - \ell ) - ( * )^{H} R_{3 + r} [f(w) - f(\ell )] \ge 0, \\ \end{aligned}$$

where \(q,r = 1,2,3.\)

Hence, the next inequalities are true:

$$\vartheta_{1} (z_{t} ) + \vartheta_{2} (z_{\sigma } ) + \vartheta_{3} (z_{{\overline{\sigma }}} ) \ge 0,$$
(54)
$$\zeta_{1} (z_{t} ,z_{\sigma } ) + \zeta_{2} (z_{t} ,z_{{\overline{\sigma }}} ) + \zeta_{3} (z_{\sigma } ,z_{{\overline{\sigma }}} ) \ge 0.$$
(55)

For any matrix \(G\) with appropriate dimension, from (33) one gets

$$2(D^{\alpha } z(t))^{H} G^{H} [ - D^{\alpha } z(t) - C(t)z_{t} + A(t)f(z_{t} ) + B(t)f(z_{\sigma } ) + E(t)D^{\alpha } z(t - \upsilon )] = 0.$$

For any positive scalars \(\nu_{j} (j = 1,2,3,4),\) from Assumption 1 and Lemma 3 in [9] one has

$$\begin{aligned} 0 & = 2(D^{\alpha } z(t))^{H} G^{H} \{ - D^{\alpha } z(t) - [C + M_{C} F_{C} (t)N_{C} ]z_{t} + [A + M_{A} F_{A} (t)N_{A} ]f(z_{t} ) \\ & \quad + [B + M_{B} F_{B} (t)N_{B} ]f(z_{\sigma } ) + [E + M_{E} F_{E} (t)N_{E} ]D^{\alpha } z(t - \upsilon )\} \\ & \le 2(D^{\alpha } z(t))^{H} G^{H} [ - D^{\alpha } z(t) - Cz_{t} + Af(z_{t} ) + Bf(z_{\sigma } ) + ED^{\alpha } z(t - \upsilon )] + \nu_{1} ( * )^{H} N_{C} z_{t} \\ & \quad + \nu_{1}^{ - 1} ( * )^{H} M_{C}^{H} G(D^{\alpha } z(t)) + \nu_{2} ( * )^{H} N_{A} f(z_{t} ) + \nu_{2}^{ - 1} ( * )^{H} M_{A}^{H} G(D^{\alpha } z(t)) + \nu_{3} ( * )^{H} N_{B} f(z_{\sigma } ) \\ & \quad + \nu_{3}^{ - 1} ( * )^{H} M_{B}^{H} G(D^{\alpha } z(t)) + \nu_{4} ( * )^{H} N_{E} (D^{\alpha } z(t - \upsilon )) + \nu_{4}^{ - 1} ( * )^{H} M_{E}^{H} G(D^{\alpha } z(t)). \\ \end{aligned}$$
(56)

Substituting (37), (38) and (40)–(56) into (39) gives

$$\dot{V}(z_{t} ,t) \le ( * )^{H} \Omega (\iota (t))\varphi (t),$$
(57)

where \(\varphi (t) = {\rm{col}}\{ z_{t} ,\;z_{\sigma } ,\;z_{{\overline{\sigma }}} ,\;f(z_{t} ),\;f(z_{\sigma } ),\;f(z_{{\overline{\sigma }}} ),\;\beta_{1t} ,\;\beta_{2t} ,\;\beta_{3t} ,\;\beta_{4t} ,\beta_{5t} ,\;\beta_{6t} ,D^{\alpha } z(t),D^{\alpha } z(t - \upsilon )\} ,\)

$$\Omega (\iota (t)) = \Omega + \Omega_{0} - ( * )^{{ \top }} \left( {\begin{array}{*{20}c} {[1 - \iota (t)][{\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} - Y_{1} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} )^{ - 1} Y_{1}^{H} ]} & {\iota (t)Y_{1} + [1 - \iota (t)]Y_{2} } \\ * & {\iota (t)[{\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} - Y_{2}^{H} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} )^{ - 1} Y_{2} ]} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\eta_{1} } \\ {\eta_{2} } \\ \end{array} } \right),$$

with \(\Omega_{0} = ( * )^{H} X^{ - 1} M^{H} G\mu_{13} .\)

It is easy to verify that inequality (57) is still true for \(\sigma (t) = 0\) or \(\sigma (t) = \overline{\sigma }.\)

Note that \(\Omega (\iota (t))\) is linear about \(\iota (t),\) inequality \(\Omega (\iota (t)) < 0\) is equal to the following two conditions:

$$\Omega (\iota (t) = 0) = \Omega + \Omega_{0} - ( * )^{{ \top }} \left( {\begin{array}{*{20}c} {{\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} - Y_{1} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} )^{ - 1} Y_{1}^{H} } & {Y_{2} } \\ * & 0 \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\eta_{1} } \\ {\eta_{2} } \\ \end{array} } \right) < 0,$$
(58)
$$\Omega (\iota (t) = 1) = \Omega + \Omega_{0} - ( * )^{{ \top }} \left( {\begin{array}{*{20}c} 0 & {Y_{1} } \\ * & {{\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} - Y_{2}^{H} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} )^{ - 1} Y_{2} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\eta_{1} } \\ {\eta_{2} } \\ \end{array} } \right) < 0.$$
(59)

By the SCL, inequalities (58), (59) are equal to the following ones respectively:

$$\left( {\begin{array}{*{20}c} {\Omega + \Omega_{0} - \eta_{1}^{{ \top }} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} )\eta_{1} - {\rm{sym}}\{ \eta_{1}^{{ \top }} Y_{2} \eta_{2} \} } & {\eta_{1}^{{ \top }} Y_{1} } \\ * & { - ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} )} \\ \end{array} } \right) < 0,$$
(60)
$$\left( {\begin{array}{*{20}c} {\Omega + \Omega_{0} - {\rm{sym}}\{ \eta_{1}^{{ \top }} Y_{1} \eta_{2} \} - \eta_{2}^{{ \top }} ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{6} )\eta_{2} } & {\eta_{2}^{{ \top }} Y_{2}^{H} } \\ * & { - ({\mathbf{\mathbb{P}}}_{4} + {\mathbf{\mathbb{P}}}_{5} )} \\ \end{array} } \right) < 0.$$
(61)

By the SCL again, inequalities (60), (61) are equal to (10) and (11) respectively. This ends the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zheng, CD. & Lin, M. Robust stability of complex-valued fractional-order neural networks with uncertain parameters based on new integral inequalities. Int. J. Mach. Learn. & Cyber. 14, 4377–4391 (2023). https://doi.org/10.1007/s13042-023-01899-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-023-01899-2

Keywords

Navigation