Skip to main content
Log in

Robust \(H_\infty \) asynchronous fault detection for uncertain singular hybrid systems based on Hmm strategy

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This paper researches robust \(H_\infty \) asynchron-ous fault detection for uncertain singular Markov jump systems with time-varying delays based on hidden Marko-v model strategy. The aim is to implement asynchronous fault detection for uncertain singular Markov jump system and realize stochastic admissibility with \(H_\infty \) performance level for augmented uncertain singular Markov jump fault detection system. By applying singular value decomposition method and free weighting matrix technique, modified admissibility conditions are addressed based on Lyapunov stability theory. Robust fault detection problem is translated into \(H_\infty \) filter design in this work. A hidden Markov model is used to describe a kind of asynchronous phenomenon produced by original system’s modes and fault detection filter’s modes, and the desired filter gains are obtained by solving linear matrix inequalities. Finally, a numerical example and a direct current motor system are used to verify the effectiveness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Xu S, Lam J (2006) Robust control and filtering of singular systems. Springer-Verlag, Berlin

    Google Scholar 

  2. Zhang Q, Yan HC, Zhang H, Chen SM, Wang M (2021) \(H_\infty \) control of singular system based on stochastic cyber-attacks and dynamic event-triggered mechanism. IEEE Trans Syst Man Cybern Syst 51(12):7510–7516

    Google Scholar 

  3. Cheng J, Park JH, Wu ZG (2021) A hidden Markov model based control for periodic systems subject to singular perturbations. Syst Control Lett 157:105059

    MathSciNet  Google Scholar 

  4. Qi WH, Zong GD, Karimi HR (2020) Sliding mode control for nonlinear stochastic singular semi-Markov jump systems. IEEE Trans Autom Control 65(1):361–368

    MathSciNet  Google Scholar 

  5. Park CE, Kwon NK, Park IS, Park PG (2019) \(H_\infty \) filtering for singular Markovian jump systems with partly unknown transition rates. Automatica 109:108528

    MathSciNet  Google Scholar 

  6. Zhuang GM, Xu SY, Zhang BY, Xu HL, Chu YM (2016) Robust \(H_\infty \) deconvolution filtering for uncertain singular Markovian jump systems with time-varying delays. Int J Robust Nonlinear Control 26(12):2564–2585

    MathSciNet  Google Scholar 

  7. Tian YF, Wang ZS (2022) Finite-time extended dissipative filtering for singular T-S fuzzy systems with nonhomogeneous Markov jumps. IEEE Trans Cybern 52(6):4574–4584

    PubMed  Google Scholar 

  8. Wang YQ, Zhuang GM, Chen X, Wang Z, Chen F (2020) Dynamic event-based finite-time mixed \(H_\infty \) and passive asynchronous filtering for T-S fuzzy singular Markov jump systems with general transition rates. Nonlinear Anal Hybrid Syst 36:00874

    MathSciNet  Google Scholar 

  9. Wang XZ, Li JH (2020) New advances in three-way decision, granular computing and concept lattice. Int J Mach Learn Cyber 11:945–946

    CAS  Google Scholar 

  10. Mobayen S, Alattas KA, Fekih A, El-Sousy FFM, Bakouri M (2022) Barrier function-based adaptive nonsingular sliding mode control of disturbed nonlinear systems: a linear matrix inequality approach. Chaos Soliton Fract 157:111918

    MathSciNet  Google Scholar 

  11. Yao XM, Zhang LL, Zheng WX (2021) Uncertain disturbance rejection and attenuation for semi-Markov jump systems with application to 2-degree-freedom robot arm. IEEE Trans Circ Syst Regul Pap 68(9):3836–3845

    ADS  Google Scholar 

  12. Kao YG, Xie J, Wang CH (2014) Stabilization of singular Markovian jump systems with generally uncertain transition rates. IEEE Trans Automat Control 59(9):2604–2610

    MathSciNet  Google Scholar 

  13. Wang XZ, Xing HJ, Li Y, Hua Q, Dong CR, Pedrycz W (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654

    Google Scholar 

  14. Jiang BP, Karimi HR, Yang SC, Gao CC, Kao YG (2021) Observer-based adaptive sliding mode control for nonlinear stochastic Markov jump systems via T-S fuzzy modeling: applications to robot arm model. IEEE Trans Ind Electron 68(1):466–477

    Google Scholar 

  15. Li HF, Li CD, Huang TW, Zhang WL (2018) Fixed-time stabilization of impulsive Cohen-Grossberg BAM neural networks. Neural Netw 98:203–211

    PubMed  Google Scholar 

  16. Shen H, Li F, Xu S, Sreeram V (2018) Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans Autom Control 63(8):2709–2714

    MathSciNet  Google Scholar 

  17. Cheng P, Chen MY, Stojanovic V, He S (2021) Asynchronous fault detection filtering for piecewise homogenous Markov jump linear systems via a dual hidden Markov model. Mech Syst Sig Process 151:107353

    Google Scholar 

  18. Zhuang GM, Sun W, Su SF, Xia JW (2021) Asynchronous feedback control for delayed fuzzy degenerate jump systems under observer-based event-driven characteristic. IEEE Trans Fuzzy Syst 29(12):3754–3768

    Google Scholar 

  19. Wang YY, Ahn CK, Yan HC, Xie SR (2021) Fuzzy control and filtering for nonlinear singularly perturbed Markov jump systems. IEEE Trans Cybern 51(1):297–308

    PubMed  Google Scholar 

  20. Ning Zk, Wang T, Song XN, Yu JY (2020) Fault detection of nonlinear stochastic systems via a dynamic event-triggered strategy. Signal Process 167:107283

    Google Scholar 

  21. Li CD, Zhou YH, Wang H, Huang TW (2017) Stability of nonlinear systems with variable-time impulses: B-equivalence method. Int J Control Autom Syst 15(5):2072–2079

    Google Scholar 

  22. Yin Y, Shi JB, Liu F, Liu YQ (2020) Robust fault detection of singular Markov jump systems with partially unknown information. Inf Sci 537:368–379

    MathSciNet  Google Scholar 

  23. Jiang YC, Yin S, Kaynak O (2021) Optimized design of parity relation-based residual generator for fault detection: data-driven approaches. IEEE Trans Ind Inf 17(2):1449–1458

    Google Scholar 

  24. Nithya V, Suveetha VT, Sakthivel R, Ma YK (2021) Finite-time asynchronous fault detection filter design for conic-type nonlinear semi-Markovian jump systems. IEEE Access 9:157609–157622

    Google Scholar 

  25. Wang XD, Fei ZY, Gao HJ, Yu JY (2019) Integral-based event-triggered fault detection filter design for unmanned surface vehicles. IEEE Trans Ind Inf 15(10):5626–5636

    Google Scholar 

  26. Zhong MY, Ding SX, Lam J, Wang HB (2003) An LMI approach to design robust fault detection filter for uncertain LTI systems. Automatica 39(3):543–550

    MathSciNet  Google Scholar 

  27. Liu GB, Park JH, Xu SY, Zhuang GM (2019) Robust non-fragile \(H_\infty \) fault detection filter design for delayed singular Markovian jump systems with linear fractional parametric uncertainties. Nonlinear Anal Hybrid Syst 32:65–78

    MathSciNet  Google Scholar 

  28. Sakthivel R, Kwon OM, Park MJ, Choi SG, Sakthivel R (2022) Robust asynchronous filtering for discrete-time T-S fuzzy complex dynamical networks against deception attacks. IEEE Trans Fuzzy Syst 30(8):3257–3269

    Google Scholar 

  29. Zhao X, Lin C, Chen B, Wang QG, Ma ZJ (2020) Adaptive event-triggered fuzzy \(H_{\infty }\) filter design for nonlinear networked systems. IEEE Trans Fuzzy Syst 28(12):3302–3314

    Google Scholar 

  30. Tao J, Lu RQ, Su HY, Shi P, Wu ZG (2018) Asynchronous filtering of nonlinear Markov jump systems with randomly occurred quantization via T-S fuzzy models. IEEE Trans Fuzzy Syst 26(4):1866–1877

    Google Scholar 

  31. Wang XZ, Cao WP (2018) Non-iterative approaches in training feed-forward neural networks and their applications. Soft Comput 22:3473–3476

    Google Scholar 

  32. Guo XG, Fan X, Ahn CK (2021) Adaptive event-triggered fault detection for interval type-2 T-S fuzzy systems with sensor saturation. IEEE Trans Fuzzy Syst 29(8):2310–2321

    Google Scholar 

  33. Lin WJ, He Y, Zhang CK, Wang LM, Wu M (2022) Event-triggered fault detection filter design for discrete-time memristive neural networks with time delays. IEEE Trans Cybern 52(5):3359–3369

    PubMed  Google Scholar 

  34. Sakthivel R, Suveetha VT, Divya H, Sakthivel R (2021) Fault detection finite-time filter design for T-S fuzzy Markovian jump system with missing measurements. Circ Syst Signal Process 40:1607–1634

    Google Scholar 

  35. Tian YF, Wang ZS (2021) A switched fuzzy filter approach to \(H_{\infty }\) filtering for Takagi-Sugeno fuzzy Markov jump systems with time delay: the continuous-time case. Inf Sci 557:236–249

    MathSciNet  Google Scholar 

  36. Wang YC, Zheng LF, Zhang HG, Xie XP (2018) Event-triggered fault detection filter design for nonlinear networked systems via fuzzy Lyapunov functions. J Frankl Inst 335(11):8392–8411

    MathSciNet  Google Scholar 

  37. Xu ZW, Wu ZG, Su HY, Shi P, Que HY (2020) Energy-to-peak filtering of semi-Markov jump systems with mismatched modes. IEEE Trans Autom Control 65(10):4356–4361

    MathSciNet  Google Scholar 

  38. Cheng P, He SP, Luan XL, Liu F (2021) Finite-region asynchronous \(H_\infty \) control for 2D Markov jump systems. Automatica 129:109590

    MathSciNet  Google Scholar 

  39. Shen Y, Wu ZG, Shi P, Wen GH (2019) Dissipativity based fault detection for 2D Markov jump systems with asynchronous modes. Automatica 106:8–17

    MathSciNet  Google Scholar 

  40. Dong SL, Wu ZG, Pan YJ, Su HY, Liu Y (2019) Hidden-Markov-model-based asynchronous filter design of nonlinear Markov jump systems in continuous-time domain. IEEE Trans Cybern 49(6):2294–2304

    PubMed  Google Scholar 

  41. Vadivel R, Hammachukiattikul P, Gunasekaran N, Saravanakumar R, Dutta H (2021) Strict dissipativity synchronization for delayed static neural networks: an event-triggered scheme. Chaos Soliton Fract 150:111212

    MathSciNet  Google Scholar 

  42. Liu YQ, Zhuang GM, Xie XP, Xia JW (2023) \(H_{\infty }\) asynchronous admissibilization for nonlinear singular delayed hybrid hydraulic turbine governing systems with impulsive perturbations. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2023.3279294

    Article  Google Scholar 

  43. Shen H, Chen MS, Wu ZG, Cao JD, Park JH (2020) Reliable event-triggered asynchronous extended passive control for semi-Markov jump fuzzy systems and its application. IEEE Trans Fuzzy Syst 28(8):1708–1722

    Google Scholar 

  44. Xue M, Yan HC, Zhang H, Sun J, Lam HK (2021) Hidden-Markov-model-based asynchronous \(H_{\infty }\) tracking control of fuzzy Markov jump systems. IEEE Trans Fuzzy Syst 29(5):1081–1092

    Google Scholar 

  45. Zhang X, He SP, Stojanovic V, Luan XL, Liu F (2021) Finite-time asynchronous dissipative filtering of conic-type nonlinear Markov jump systems. Sci China Inf Sci 64:152206

    MathSciNet  Google Scholar 

  46. Ren CC, He SP, Luan XL, Liu F, Karimi HR (2021) Finite-time \(L_2\)-gain asynchronous control for continuous-time positive hidden Markov jump systems via T-S fuzzy model approach. IEEE Trans Cybern 51(1):77–87

    PubMed  Google Scholar 

  47. Zhuang GM, Xia JW, Feng JE, Sun W, Zhang BY (2021) Admissibilization for implicit jump systems with mixed retarded delays based on reciprocally convex integral inequality and Barbalat’s lemma. IEEE Trans Syst Man Cybern Syst 51(11):6808–6818

    Google Scholar 

  48. Li HF, Li CD, Ouyang DQ, Nguang SK (2021) Impulsive synchronization of unbounded delayed inertial neural networks with actuator saturation and sampled-data control and its application to image encryption. IEEE Trans Neural Netw Learn Syst 32(4):1460–1473

    MathSciNet  PubMed  Google Scholar 

  49. Zhang BY, Zheng WX, Xu SY (2012) On robust \(H_\infty \) filtering of uncertain Markovian jump time-delay systems. Int J Adapt Control Signal Process 26(2):138–157

    MathSciNet  CAS  Google Scholar 

  50. Zhuang GM, Su SF, Xia JW, Sun W (2021) HMM-based asynchronous \(H_\infty \) filtering for fuzzy singular Markovian switching systems with retarded time-varying delays. IEEE Trans Cybern 51(3):1189–1203

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editors and the Referees for the valuabl comments and suggestions for improving the paper. This work was partly supported by National Natural Science Foundation of China under Grants 62173174, 61973148, 61877036, 61773191; Shandong Provincial Natural Science Foundation under Grant ZR2021JQ23; Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology under Grant 319462208; Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions under Grant 2019KJI010; Graduate Education High-Quality Curriculum Construction Project for Shandong Province under Grant SDYKC20185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhuang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Conditions of theorem 2

$$\begin{aligned} \begin{aligned} \breve{X}&=\left[ \begin{array}{cccccccccc} X^{1}_{11} &{} 0&{}0&{}X^{1}_{12}&{}0&{}0\\ *&{} X^{2}_{11}&{}0&{}0&{}X^{2}_{12}&{}0\\ *&{}*&{}X^{3}_{11}&{}0&{}0&{}X^{3}_{12}\\ *&{}*&{}*&{}X^{1}_{22}&{}0&{}0\\ *&{}*&{}*&{}*&{}X^{2}_{22}&{}0\\ *&{}*&{}*&{}*&{}*&{}X^{3}_{22} \end{array} \right] ,\\ \Sigma _{1}&=\left[ \begin{array}{cccccc} X^{1}_{11}&{}0&{}0\\ *&{}X^{2}_{11}&{}0\\ *&{}*&{}X^{3}_{11} \end{array} \right] ,~~~~~~~~ \Sigma _{2}=\left[ \begin{array}{cccccc} X^{1}_{12}&{}0&{}0\\ *&{}X^{2}_{12}&{}0\\ *&{}*&{}X^{3}_{12} \end{array} \right] ,\\ \Sigma _{3}&=\left[ \begin{array}{cccccc} N_{11}&{}N_{12}&{}N_{13}\\ *&{}N_{22}&{}N_{23}\\ *&{}*&{}N_{33} \end{array} \right] ,~~~~~~~~ \Sigma _{4}=\left[ \begin{array}{cccccc} X^{1}_{22}&{}0&{}0\\ *&{}X^{2}_{22}&{}0\\ *&{}*&{}X^{3}_{22} \end{array} \right] ,\\ \Sigma _{5}&=\left[ \begin{array}{cccccc} \hat{N}_{11}&{}\hat{N}_{12}&{}\hat{N}_{13}\\ *&{}\hat{N}_{22}&{}\hat{N}_{23}\\ *&{}*&{}\hat{N}_{33} \end{array} \right] ,~~~~~~~~~~~~~ \Upsilon _{1i\theta }=\left[ \begin{array}{cccccccc} \tilde{\gamma }_{1i\theta }&{}\tilde{\gamma }_{2i\theta }\\ *&{}\tilde{\gamma }_{3i\theta } \end{array} \right] , \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Phi _{i\theta 2}&=\left[ \begin{array}{cccccc} \Phi _{14i\theta }&{}\Phi _{15i\theta }&{}\Phi _{16i\theta }\\ \Phi _{24i\theta }&{}\Phi _{25i\theta }&{}\Phi _{26i\theta }\\ \Phi _{34i}&{}\Phi _{35i}&{}\Phi _{36i} \end{array} \right] ,~~~~~~~~ \Upsilon _{2i\theta }=\left[ \begin{array}{cccccccc} \tilde{\gamma }_{4i\theta }&{}\tilde{\gamma }_{5i\theta }\\ \tilde{\gamma }_{6i\theta }&{}\tilde{\gamma }_{7i\theta } \end{array} \right] ,\\ \Phi _{i\theta 1}&=\left[ \begin{array}{cccccc} \Phi _{11i\theta }&{}\Phi _{12i\theta }&{}\Phi _{13i\theta }\\ *&{}\Phi _{22i\theta }&{}\Phi _{23i\theta }\\ *&{}*&{}\Phi _{33i} \end{array} \right] , \Phi _{i\theta 5}=\left[ \begin{array}{cccccc} \Phi _{44i}&{}\Phi _{45i}&{}\Phi _{46i}\\ *&{}\Phi _{55}&{}\Phi _{56i}\\ *&{}*&{}\Phi _{66i} \end{array} \right] ,\\ \Sigma _{6}&=\left[ \begin{array}{cccccc} E^{T}R_{1}E&{}0&{}0\\ *&{}E_{f}^{T}R_{2}E_{f}&{}0\\ *&{}*&{}R_{3} \end{array} \right] ,~~~~~~ \tilde{\gamma }_{1}^{1}=\left[ \begin{array}{cccccccc} \Upsilon _{88}&{}\Upsilon _{89}\\ *&{}\Upsilon _{99}\\ \end{array} \right] , \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \tilde{\gamma }_{2i\theta }&=\left[ \begin{array}{cccccc} \Upsilon _{15i\theta }&{}\Upsilon _{16i\theta }&{}\Upsilon _{17i\theta }\\ \Upsilon _{25i\theta }&{}\Upsilon _{26i\theta }&{}\Upsilon _{27i\theta }\\ \Upsilon _{35i}&{}\Upsilon _{36i}&{}\Upsilon _{37i}\\ \Upsilon _{45i}&{}\Upsilon _{46i}&{}\Upsilon _{47i}\\ \end{array} \right] , \tilde{\gamma }_{3i\theta }=\left[ \begin{array}{cccccc} \Upsilon _{55}&{}\Upsilon _{56i}&{}\Upsilon _{57i\theta }\\ *&{}\Upsilon _{66i}&{}\Upsilon _{67i\theta }\\ *&{}*&{}\Upsilon _{77} \end{array} \right] ,\\ \tilde{\gamma }_{1i\theta }&=\left[ \begin{array}{cccccc} \Upsilon _{11i\theta }&{}\Upsilon _{12i\theta }&{}\Upsilon _{13i\theta }&{}\Upsilon _{14i\theta }\\ *&{}\Upsilon _{22i\theta }&{}\Upsilon _{23i\theta }&{}\Upsilon _{24i\theta }\\ *&{}*&{}\Upsilon _{33i}&{}\Upsilon _{34i}\\ *&{}*&{}*&{}\Upsilon _{44i} \end{array} \right] ,~~~ \Upsilon _{5i}=\left[ \begin{array}{cccccccc} 0&{}0\\ \tilde{\Upsilon }_{3i}^{3}&{}\tilde{\Upsilon }_{4i}^{4} \end{array} \right] ,\\ \tilde{\gamma }_{4i\theta }&\!=\!\left[ \begin{array}{cccccc} \Upsilon _{18i\theta }&{}\Upsilon _{19}&{}\Upsilon ^{1}_{11i\theta }\\ \Upsilon _{28i\theta }&{}\Upsilon _{29}&{}\Upsilon ^{1}_{21i\theta }\\ \Upsilon _{38i\theta }&{}\Upsilon _{39}&{}\Upsilon ^{1}_{31i\theta } \end{array} \right] \!,\! \tilde{\gamma }_{5i\theta }\!=\!\left[ \begin{array}{cccccc} \Upsilon ^{1}_{12i\theta }&{}\Upsilon ^{1}_{13i\theta }&{}\Upsilon ^{1}_{14i}&{}\Upsilon ^{1}_{15i\theta }\\ \Upsilon ^{1}_{22i\theta }&{}\Upsilon ^{1}_{23i\theta }&{}\Upsilon ^{1}_{24i}&{}\Upsilon ^{1}_{25i\theta }\\ \Upsilon ^{1}_{32i\theta }&{}\Upsilon ^{1}_{33i\theta }&{}\Upsilon ^{1}_{34}&{}\Upsilon ^{1}_{35i\theta }\\ \end{array} \right] \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \tilde{\gamma }_{6i\theta }&=\left[ \begin{array}{cccccc} 0&{}0&{}\Upsilon ^{1}_{41i\theta }\\ 0&{}0&{}\Upsilon ^{1}_{51i\theta }\\ 0&{}0&{}\Upsilon ^{1}_{61i\theta }\\ \Upsilon _{78}&{}\Upsilon _{79}&{}0 \end{array} \right] ,\! \tilde{\gamma }_{7i\theta }=\left[ \begin{array}{cccccc} \Upsilon ^{1}_{42i\theta }&{}\Upsilon ^{1}_{43i\theta }&{}0&{}0\\ \Upsilon ^{1}_{52i\theta }&{}\Upsilon ^{1}_{53i\theta }&{}0&{}0\\ \Upsilon ^{1}_{62i\theta }&{}\Upsilon ^{1}_{63i\theta }&{}0&{}0\\ 0&{}0&{}\Upsilon ^{1}_{74i}&{}0 \end{array} \right] ,\\ \Upsilon _{3i\theta }&=\left[ \begin{array}{cccccccc} \tilde{\mathfrak {N}}_{1i}&{}0&{}\tilde{\gamma }_{8i\theta }&{}0\\ 0&{}\tilde{\gamma }_{9i\theta }&{}0&{}0\\ \tilde{\mathfrak {N}}_{2i}&{}0&{}0&{}\tilde{\mathfrak {N}}_{3i} \end{array} \right] , \tilde{\mathfrak {N}}_{1i}=\left[ \begin{array}{cccccc} \mathfrak {N}^{T}_{1i}&{}\mathfrak {N}^{T}_{1i}\\ 0&{}0\\ 0&{}0 \end{array} \right] ,\\ \tilde{\gamma }_{9i\theta }&=\left[ \begin{array}{cccccc} \Upsilon ^{2}_{42i\theta }&{}{0}&{}{0}\\ 0&{}0&{}\Upsilon ^{2}_{52i\theta }\\ 0&{}0&{}\Upsilon ^{2}_{62i\theta } \end{array} \right] ,~~~~~~~ \Upsilon _{4i}=\left[ \begin{array}{cccccccc} \tilde{\gamma }_{1}^{1}&{}0&{}0&{}0\\ *&{}\tilde{\varpi }&{}\tilde{\gamma }_{2i}^{2}&{}0\\ *&{}*&{}-I&{}0\\ *&{}*&{}*&{}-\varepsilon _{1}I \end{array} \right] , \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \tilde{\Upsilon }_{3i}^{3}&=\left[ \begin{array}{cccccccc} 0&{}0&{}\Upsilon ^{3}_{4i}\\ 0&{}0&{}0 \end{array} \right] , \tilde{\Upsilon }_{4i}^{4}=\left[ \begin{array}{cccccccc} 0&{}0&{}0&{}\Upsilon ^{3}_{5i}\\ 0&{}0&{}0&{}0 \end{array} \right] , \tilde{\mathfrak {N}}^{T}_{2i}=\left[ \begin{array}{cccccc} \mathfrak {N}_{2i}\\ 0 \end{array} \right] ,\\ \tilde{\mathfrak {N}}^{T}_{3i}&=\left[ \begin{array}{cccccc} \mathfrak {N}_{2i}\\ \mathfrak {N}_{2i}\\ 0 \end{array} \right] ,~~ \tilde{\gamma }_{8i\theta }=\left[ \begin{array}{cccccc} \Upsilon ^{2}_{13i\theta }\\ \Upsilon ^{2}_{23i\theta }\\ \Upsilon ^{2}_{33i\theta } \end{array} \right] ,~~~ \Phi _{i\theta 4}=\left[ \begin{array}{cccccc} N^{T}_{1}\\ 0\\ 0 \end{array} \right] ,\\ \tilde{\gamma }_{2i}^{2}&=\left[ \begin{array}{cccccccc} \Upsilon ^{3}_{1i}\\ \Upsilon ^{3}_{2i}\\ \Upsilon ^{3}_{3i} \end{array} \right] ,~~ \Phi _{i\theta 3}=\left[ \begin{array}{cccccc} \Phi _{17i\theta }\\ \Phi _{27i\theta }\\ \Phi _{37i} \end{array} \right] ,~~~ \Phi _{i\theta 6}=\left[ \begin{array}{cccccc} \Phi _{47i\theta }\\ \Phi _{57i\theta }\\ \Phi _{67i} \end{array} \right] ,\\ \tilde{\varpi }&={ -diag\left\{ \varpi I,~\varpi I,~\varpi I\right\} ,}\\ \Upsilon _{6}&=-diag\left\{ \varepsilon ^{-1}_{1}I,~ \varepsilon _{2}I, ~ \varepsilon ^{-1}_{2}I,~ \varepsilon _{3}I,~ \varepsilon ^{-1}_{3}I, ~ \varepsilon _{4}I, ~\varepsilon ^{-1}_{4}I\right\} \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \Phi _{11i\theta }&=sym\{T_{1i}A_{i}+\mathcal {B}_{fi\theta }C_{i}\}+\sum \limits _{j=1}^{N}\pi _{ij}E^{T}\tilde{P}_{j1}E,\\ \Phi _{12i\theta }&=\mathcal {A}_{fi\theta }+A^{T}_{i}T^{T}_{2i}+C^{T}_{i}\mathcal {B}^{T}_{fi\theta }+\sum \limits _{j=1}^{N}\pi _{ij}E^{T}\tilde{P}_{j2}E_{f},\\ \Phi _{13i\theta }&=T_{4i}A_{w}+A^{T}_{i}T^{T}_{3i}+C^{T}_{i}\mathcal {B}^{T}_{fi\theta }+\sum \limits _{j=1}^{N}\pi _{ij}E^{T}\tilde{P}_{j3}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Phi _{22i\theta }&=sym\{\mathcal {A}_{fi\theta }\}+\sum \limits _{j=1}^{N}\pi _{ij}E_{f}^{T}\tilde{P}_{j4}E_{f},\\ \Phi _{23i\theta }&=T_{5i}A_{w}+\mathcal {A}^{T}_{fi\theta }+\sum \limits _{j=1}^{N}\pi _{ij}E_{f}^{T}\tilde{P}_{j5},\\ \Phi _{33i}&=sym\{T_{6i}A_{w}\}+\sum \limits _{j=1}^{N}\pi _{ij}\tilde{P}_{j6}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Phi _{14i\theta }&=E^{T}\tilde{P}^{T}_{i1}+L_{1i}J^{T}_{1}-T_{1i}+A^{T}_{i}T^{T}_{11i}+C^{T}_{i}\mathcal {B}^{T}_{fi\theta },\\ \Phi _{15i\theta }&=E^{T}\tilde{P}_{i2}+L_{2i}J^{T}_{2}-T+A^{T}_{i}T^{T}_{21i}+C^{T}_{i}\mathcal {B}^{T}_{fi\theta },\\ \Phi _{16i\theta }&=E^{T}\tilde{P}_{i3}+L_{3i}J^{T}_{3}-T_{4i}+A^{T}_{i}T^{T}_{31i}+C^{T}_{i}\mathcal {B}^{T}_{fi\theta },\\ \Phi _{24i\theta }&=E^{T}_{f}\tilde{P}^{T}_{i2}+L_{4i}J^{T}_{1}-T_{2i}+A^{T}_{fi\theta },\\ \Phi _{25i\theta }&=E^{T}_{f}\tilde{P}^{T}_{i4}+L_{5i}J^{T}_{2}-T+A^{T}_{fi\theta },\\ \Phi _{26i\theta }&=E^{T}_{f}\tilde{P}_{i5}+L_{6i}J^{T}_{3}-T_{5i}+A^{T}_{fi\theta },\\ \Phi _{34i}&=\tilde{P}^{T}_{i3}+L_{7i}J^{T}_{1}-T_{3i}+A^{T}_{w}T^{T}_{41i},\\ \Phi _{35i}&=\tilde{P}^{T}_{i5}+L_{8i}J^{T}_{2}-T+A^{T}_{w}T^{T}_{51i},\\ \Phi _{36i}&=\tilde{P}^{T}_{i6}+L_{9i}J^{T}_{3}-T_{6i}+A^{T}_{w}T^{T}_{61i}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Phi _{17i\theta }&=T_{1i}M_{1i}+\mathcal {B}_{fi\theta }M_{2i},\\ \Phi _{37i\theta }&=T_{3i}M_{1i}+\mathcal {B}_{fi\theta }M_{2i},\\ \Phi _{47i\theta }&=T_{11i}M_{1i}+\mathcal {B}_{fi\theta }M_{2i},\\ \Phi _{57i\theta }&=T_{21i}M_{1i}+\mathcal {B}_{fi\theta }M_{2i},\\ \Phi _{67i\theta }&=T_{31i}M_{1i}+\mathcal {B}_{fi\theta }M_{2i},\\ \Phi _{44i}&=-sym\{T_{11i}\},~~~~~~~~~ \Phi _{45i}=-sym\{T^{T}_{21i}\}-T,\\ \\ \Phi _{27i\theta }&=T_{2i}M_{1i}+\mathcal {B}_{fi\theta }M_{2i},\\ \Phi _{46i}&=-sym\{T^{T}_{31i}\}-T_{41i},~~ \Phi _{55}=-sym\{T\},\\ \Phi _{56i}&=-T^{T}-T_{51i},~~~~~~~~~~~ \Phi _{66i}=-sym\{T_{61i}\}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon _{11i\theta }&=sym\{\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }C_{i}+T_{1i}A_{i}\}+\sum \limits _{j=1}^{N}\pi _{ij}E^{T}\tilde{P}_{j1}E+\\ {}&Q_{1}+sym\{N_{11}\}+\tau X^{1}_{11}, \Upsilon _{44i}=-sym\{T_{11i}\}+\tau R_{1},\\ \Upsilon _{12i\theta }&=\sum \limits _{\theta =1}^{M}\lambda _{i\theta }(\mathcal {A}_{fi\theta }+C^{T}_{i}\mathcal {B}^{T}_{fi\theta })+A^{T}_{i}T^{T}_{2i}+N_{12}+N_{12}\\ {}&+\sum \limits _{j=1}^{N}\pi _{ij}E^{T}\tilde{P}_{j2}E_{f},~~~ \Upsilon _{18i\theta }=-N_{12}+\hat{N}_{12},\\ \Upsilon _{13i\theta }&=T_{4i}A_{w}+A^{T}_{i}T^{T}_{3i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }C^{T}_{i}\mathcal {B}^{T}_{fi\theta }\\ {}&+\sum \limits _{j=1}^{N}\pi _{ij}E^{T}\tilde{P}_{j3}+N_{13}+N_{13},~ ~\Upsilon _{45i}=-T-T^{T}_{21i}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon _{22i\theta }&=sym\{\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {A}_{fi\theta }\}+\sum \limits _{j=1}^{N}\pi _{ij}E_{f}^{T}\tilde{P}_{j4}E_{f}+Q_{2}\\ {}&+sym\{N_{22}\}+ \tau X^{2}_{11},~~~~~~ \Upsilon _{46i}=-T_{41i}-T^{T}_{31i},\\ \Upsilon _{23i\theta }&\!=\!T_{5i}A_{w}\!+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {A}^{T}_{fi\theta }\!+\sum \limits _{j=1}^{N}\pi _{ij}E_{f}^{T}\tilde{P}_{j5}\!+N_{23}+N_{23},\\ \Upsilon _{55}&=-sym\{T\}+\tau R_{2},~~~~~~~ \Upsilon _{56i}=-T_{51i}-T^{T},\\ \Upsilon _{33i}&=sym\{T_{6i}A_{w}+N_{33}\}+\sum \limits _{j=1}^{N}\pi _{ij}\tilde{P}_{j6}+Q_{3}+X^{3}_{11},\\ \Upsilon _{14i\theta }&=E^{T}\tilde{P}^{T}_{i1}+L_{1i}J^{T}_{1}\!-T_{1i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }C^{T}_{i}\mathcal {B}^{T}_{fi\theta }+A^{T}_{i}T^{T}_{11i}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon _{19}&=-N_{13}+\hat{N}_{13},~~~~ \Upsilon _{29}=-N_{23}+\hat{N}_{23},\\ \Upsilon _{15i\theta }&=E^{T}\tilde{P}_{i2}+L_{2i}J^{T}_{2}-T+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }C^{T}_{i}\mathcal {B}^{T}_{fi\theta }+A^{T}_{i}T^{T}_{21i},\\ \Upsilon _{16i\theta }&=E^{T}\tilde{P}_{i3}+L_{3i}J^{T}_{3}-T_{4i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }C^{T}_{i}\mathcal {B}^{T}_{fi\theta }+A^{T}_{i}T^{T}_{31i},\\ \Upsilon _{66i}&=-sym\{T^{T}_{61i}\}+\tau R_{3}, \Upsilon _{28i\theta }=-N_{22}+\hat{N}^{T}_{22}+\tau X^{2}_{12}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon _{24i\theta }&=E_{f}^{T}\tilde{P}^{T}_{i2}+L_{4i}J^{T}_{1}-T_{2i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {A}^{T}_{fi\theta },\\ \Upsilon _{25i\theta }&=E_{f}^{T}\tilde{P}^{T}_{i4}+L_{5i}J^{T}_{2}-T+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {A}^{T}_{fi\theta },\\ \Upsilon _{26i\theta }&=E_{f}^{T}\tilde{P}_{i5}+L_{6i}J^{T}_{3}-T_{5i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {A}^{T}_{fi\theta },\\ \Upsilon _{34i}&=\tilde{P}^{T}_{i3}+L_{7i}J^{T}_{1}-T_{3i}+A^{T}_{w}T^{T}_{41i},\\ \Upsilon _{35i}&=\tilde{P}^{T}_{i5}+L_{8i}J^{T}_{2}-T+A^{T}_{w}T^{T}_{51i},\\ \Upsilon _{36i}&=\tilde{P}_{i6}+L_{9i}J^{T}_{3}-T_{6i}+A^{T}_{w}T^{T}_{61i}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon _{17i\theta }&=T_{1i}A_{di}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }C_{di}-N_{11}+\hat{N}^{T}_{11}+\tau X^{1}_{12},\\ \Upsilon _{27i\theta }&=T_{2i}A_{di}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }C_{di}-N_{12}+\hat{N}^{T}_{12},\\ \Upsilon _{99}&=-(1-\mu )Q_{3}-sym\{\hat{N}_{33}\}+\tau X^{3}_{22},\\ \Upsilon _{37i\theta }&=T_{3i}A_{di}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }C_{di}-N^{T}_{13}+\hat{N}^{T}_{13},\\ \\ \Upsilon _{38i\theta }&=-N^{T}_{23}+\hat{N}^{T}_{23},~~ \Upsilon _{39}=-N_{33}+\hat{N}^{T}_{33}+\tau X^{3}_{12}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon _{47i\theta }&=\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }C_{di}+T_{11i}A_{di},\\ \Upsilon _{57i\theta }&=\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }C_{di}+T_{21i}A_{di},\\ \Upsilon _{67i\theta }&=\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }C_{di}+T_{31i}A_{di},\\ \Upsilon _{77}&=-(1-\mu )Q_{1}-sym\{\hat{N}_{11}\}+\tau X^{1}_{22},\\ \Upsilon _{78}&=-\hat{N}_{12}-\hat{N}_{12},~~ \Upsilon _{79}=-\hat{N}_{13}-\hat{N}_{13},\\ \Upsilon _{88}&=-(1-\mu )Q_{2}-sym\{\hat{N}_{22}\}+\tau X^{2}_{22},\\ \Upsilon _{89}&=-\hat{N}_{23}-\hat{N}_{23}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon ^{1}_{11i\theta }&=T_{1i}B_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }G_{i},\\ \Upsilon ^{1}_{12i\theta }&=T_{1i}D_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }H_{i},\\ \Upsilon ^{1}_{13i\theta }&=T_{1i}F_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }V_{i}+T_{4i}B_{w},\\ \Upsilon ^{1}_{21i\theta }&=T_{2i}B_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }G_{i},\\ \Upsilon ^{1}_{22i\theta }&=T_{2i}D_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }H_{i}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon ^{1}_{23i\theta }&=T_{2i}F_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }V_{i}+T_{5i}B_{w},\\ \Upsilon ^{1}_{31i\theta }&=T_{3i}B_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }G_{i},\\ \Upsilon ^{1}_{32i\theta }&=T_{3i}D_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }H_{i},\\ \Upsilon ^{1}_{33i\theta }&=T_{3i}F_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }V_{i}+T_{6i}B_{w},\\ \Upsilon ^{1}_{41i\theta }&=T_{11i}B_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }G_{i}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon ^{1}_{42i\theta }&=T_{11i}D_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }H_{i},\\ \Upsilon ^{1}_{43i\theta }&=T_{11i}F_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }V_{i}+T_{41i}B_{w},\\ \Upsilon ^{1}_{51i\theta }&=T_{21i}B_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }G_{i},\\ \Upsilon ^{1}_{52i\theta }&=T_{21i}D_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }H_{i},\\ \Upsilon ^{1}_{53i\theta }&=T_{21i}F_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }V_{i}+T_{51i}B_{w},\\ \Upsilon ^{1}_{61i\theta }&=T_{31i}B_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }G_{i},\\ \Upsilon ^{1}_{62i\theta }&=T_{31i}D_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }H_{i}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon ^{1}_{63i\theta }&=T_{31i}F_{i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }V_{i}+T_{61i}B_{w},\\ \Upsilon ^{1}_{15i\theta }&=T_{1i}M_{1i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }M_{2i},\\ \Upsilon ^{1}_{25i\theta }&=T_{2i}M_{1i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }M_{2i},\\ \Upsilon ^{1}_{35i\theta }&=T_{3i}M_{1i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }M_{2i},\\ \Upsilon ^{2}_{42i\theta }&=\Upsilon ^{2}_{13i\theta }=T_{11i}M_{1i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }M_{2i},\\ \Upsilon ^{2}_{52i\theta }&=\Upsilon ^{2}_{23i\theta }=T_{21i}M_{1i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }M_{2i}, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon ^{1}_{14i}&=[\sqrt{\lambda _{i1}}C^{T}_{i}\mathcal {D}^{T}_{fi1}~\sqrt{\lambda _{i2}}C^{T}_{i}\mathcal {D}^{T}_{fi2}\cdots ~\sqrt{\lambda _{iM}}C^{T}_{i}\mathcal {D}^{T}_{fiM}],\\ \Upsilon ^{1}_{24i}&=[\sqrt{\lambda _{i1}}\mathcal {C}^{T}_{fi1}~\sqrt{\lambda _{i2}}\mathcal {C}^{T}_{fi2}\cdots ~\sqrt{\lambda _{iM}}\mathcal {C}^{T}_{fiM}],\\ \Upsilon ^{1}_{74i}&=[\sqrt{\lambda _{i1}}C^{T}_{di}\mathcal {D}^{T}_{fi1}~\sqrt{\lambda _{i2}}C^{T}_{di}\mathcal {D}^{T}_{fi2}\cdots ~\sqrt{\lambda _{iM}}C^{T}_{di}\mathcal {D}^{T}_{fiM}],\\ \Upsilon ^{1}_{34i}&=-[\sqrt{\lambda _{i1}}C^{T}_{w}~\sqrt{\lambda _{i2}}C^{T}_{w}\cdots ~\sqrt{\lambda _{iM}}C^{T}_{w}],\\ \Upsilon ^{3}_{1i}&=[\sqrt{\lambda _{i1}}G^{T}_{i}\mathcal {D}_{fi1}~\sqrt{\lambda _{i2}}G^{T}_{i}\mathcal {D}_{fi2}\cdots ~\sqrt{\lambda _{iM}}G^{T}_{i}\mathcal {D}_{fiM}], \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Upsilon ^{2}_{62i\theta }&=\Upsilon ^{2}_{33i\theta }=T_{31i}M_{1i}+\sum \limits _{\theta =1}^{M}\lambda _{i\theta }\mathcal {B}_{fi\theta }M_{2i},\\ \Upsilon ^{3}_{2i}&=[\sqrt{\lambda _{i1}}H^{T}_{i}\mathcal {D}_{fi1}~\sqrt{\lambda _{i2}}H^{T}_{i}\mathcal {D}_{fi2}\cdots ~\sqrt{\lambda _{iM}}H^{T}_{i}\mathcal {D}_{fiM}],\\ \Upsilon ^{3}_{3i}&=\left[ \begin{array}{cccccc} \sqrt{\lambda _{i1}}V^{T}_{i}\mathcal {D}_{fi1}-D_w&\sqrt{\lambda _{i2}}V^{T}_{i}\mathcal {D}_{fi2}-D_w&\end{array}\right. \\&\left. \begin{array}{ccc} \cdots&\sqrt{\lambda _{iM}}V^{T}_{i}\mathcal {D}_{fiM}-D_w \end{array} \right] ,\\ \Upsilon ^{3}_{4i}&=\Upsilon ^{3}_{5i}=\left[ \begin{array}{cccccc} \sqrt{\lambda _{i1}}M^{T}_{2i}\mathcal {D}^{T}_{fi1}&\sqrt{\lambda _{i2}}M^{T}_{2i}\mathcal {D}^{T}_{fi2}&\end{array}\right. \\&\left. \begin{array}{ccc} \cdots&\sqrt{\lambda _{iM}}M^{T}_{2i}\mathcal {D}^{T}_{fiM} \end{array} \right] ^{T}.\\ \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Zhuang, G., Xia, J. et al. Robust \(H_\infty \) asynchronous fault detection for uncertain singular hybrid systems based on Hmm strategy. Int. J. Mach. Learn. & Cyber. 15, 757–773 (2024). https://doi.org/10.1007/s13042-023-01937-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-023-01937-z

Keywords

Navigation