Skip to main content

Advertisement

Log in

Uncertain mean-risk index portfolio selection considering inflation: Chaos adaptive genetic algorithm

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This paper discusses a mean-risk index model and the solution algorithm for portfolio selection considering inflation under the uncertain environment. Firstly, we propose an uncertain mean-risk index model considering inflation which is one of the most general multiplicative background risks. To get the optimal solution of the proposed model, we provide a chaos adaptive genetic algorithm (CAGA), which is an improvement of the adaptive genetic algorithm (AGA). Through numerical experiments, the performances of the proposed algorithm are tested. Comparison with other genetic algorithms shows the better performance of the proposed algorithm. Finally, a numerical example is given to demonstrate the application of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. Markowitz H (1952) Portfolio selection. J Financ 7:77–91

    Google Scholar 

  2. Liu B (2007) Uncertainty theory. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  3. Detemple J, Rindisbacher M (2015) Closed-form solutions for optimal portfolio selection with stochastic interest rate and investment constraints. Math Financ 15(4):539–568

    Article  MathSciNet  Google Scholar 

  4. Wang P, Li Z, Sun J (2019) Robust portfolio choice for a DC pension plan with inflation risk and mean-reverting risk premium under ambiguity. Optimization 70(1):191–224

    Article  MathSciNet  CAS  Google Scholar 

  5. Yang P (2020) Robust time-consistent portfolio selection for an investor under CEV model with inflation influence. Math Probl Eng 2359135:1–14

    MathSciNet  Google Scholar 

  6. RiskMetrics Group, RiskMetrics-Technical Document. J. P. Morgan/Reuters, NY (1996) Available online at: www.jpmorgan.com/RiskManagement/RiskMetrics/RiskMetrics.html

  7. Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J Bank Financ 26(7):1443–1471

    Article  Google Scholar 

  8. Chen H, Fan K (2023) Tail value-at-risk-based expectiles for extreme risks and their application in distributionally robust portfolio selections. Mathematics 11(1):91

    Article  MathSciNet  Google Scholar 

  9. Huo YL, Xu CH, Shiina T (2020) Modeling and solving portfolio selection problems based on PVaR. Quant Financ 20(12):1889–1898

    Article  MathSciNet  Google Scholar 

  10. Huang X (2012) A risk index model for portfolio selection with returns subject to experts estimations. Fuzzy Optim Decis Mak 11(4):451–463

    Article  MathSciNet  Google Scholar 

  11. Holland J (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology. Control and Artificial Intelligence

  12. Gao XZ, Wang XL, Jokinen T, Ovaska SJ, Arkkio A, Zenger K (2012) A hybrid optimization method for wind generator design. Int J Innov Comput Inf Control 8(6):4347–4373

    Google Scholar 

  13. Bansal JC, Sharma H, Arya KV, Deep K, Pant M (2014) Self-adaptive artificial bee colony. Optimization 63(10):1513–1532

    Article  MathSciNet  Google Scholar 

  14. Gao XZ, Nalluri MSR, Kannan K, Sinharoy D (2020) Multi-objective optimization of feature selection using hybrid cat swarm optimization. Sci China Technol Sci 64(3):508–520

    Article  ADS  Google Scholar 

  15. Turkoglu B, Uymaz SA, Kaya E (2022) Clustering analysis through artificial algae algorithm. Int J Mach Learn Cybern 13(4):1179–1196

    Article  Google Scholar 

  16. Hu C, Wang C, Yan X (2012) A self-adaptive differential evolution algorithm based on ant system with application to estimate kinetic parameters. Optimization 61(1):99–126

    Article  MathSciNet  Google Scholar 

  17. Tang LH, D’Ariano A, Xu XF, Li YT, Ding XB, Sama M (2021) Scheduling local and express trains in suburban rail transit lines: mixed-integer nonlinear programming and adaptive genetic algorithm. Comput Op Res 135:105436

    Article  MathSciNet  Google Scholar 

  18. Liu B (2010) Uncertainty theory, a branch of mathematics for modeling human uncertainty. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  19. Huang X (2010) Portfolio analysis: from probabilistic to credibilistic and uncertain approaches. Springer-Verlag, Berlin

    Book  Google Scholar 

  20. Jin X, Chen N, Yuan Y (2019) Multi-period and tri-objective uncertain portfolio selection model: a behavioral approach. North Am J Econ Financ 47:492–504

    Article  Google Scholar 

  21. Chang J, Sun L, Zhang B, Peng J (2020) Multi-period portfolio selection with mental accounts and realistic constraints based on uncertainty theory. J Comput Appl Math 377:112892

    Article  MathSciNet  Google Scholar 

  22. Li J, Wang L (2020) A minimax regret approach for robust multi-objective portfolio selection problems with ellipsoidal uncertainty sets. Comput Ind Eng 147:106646

    Article  Google Scholar 

  23. Huang X, Hong K, Kim J, Choe I (2022) Multi-objective uncertain project selection considering synergy. Int J Mach Learn Cybern 13(8):2383–2402

    Article  Google Scholar 

  24. Huang X, Jiang G (2021) Portfolio management with background risk under uncertain mean-variance utility. Fuzzy Optim Decis Mak 20(3):315–330

    Article  MathSciNet  Google Scholar 

  25. Zhang P (2019) Multiperiod mean absolute deviation uncertain portfolio selection with real constraints. Soft Comput 23(13):5081–5098

    Article  Google Scholar 

  26. Li B, Shu Y, Sun Y, Teo K (2020) An optimistic value-variance-entropy model of uncertain portfolio optimization problem under different risk preferences. Soft Comput 25(5):3993–4001

    Article  Google Scholar 

  27. Li B, Li XF, Teo KL, Zheng PY (2022) A new uncertain random portfolio optimization model for complex systems with downside risks and diversification. Chaos Solitons Fractals 160:112213

    Article  MathSciNet  Google Scholar 

  28. Huang X, Ma D (2022) Uncertain mean-chance model for portfolio selection with multiplicative background risk. Int J Syst Sci Op Logist. https://doi.org/10.1080/23302674.2022.2158443

    Article  Google Scholar 

  29. Zhai J, Bai M (2018) Mean-risk model for uncertain portfolio selection with background risk. J Comput Appl Math 330:59–69

    Article  MathSciNet  Google Scholar 

  30. Wang X, Huang X (2019) A risk index to model uncertain portfolio investment with options. Econ Model 80:284–293

    Article  Google Scholar 

  31. Huang X, Jiang G, Gupta P, Mehlawat M (2021) A risk index model for uncertain portfolio selection with background risk. Comput Op Res 132:105331

    Article  MathSciNet  Google Scholar 

  32. Mehralizade R, Amini M, Gildeh BS, Ahmadzade H (2021) A risk index to find the optimal uncertain random portfolio. Soft Comput 25(15):9789–9810

    Article  Google Scholar 

  33. Talatahari S, Azar BF, Sheikholeslami R, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17(3):1312–1319

    Article  MathSciNet  ADS  Google Scholar 

  34. Gharooni G, Moein F, Deldari H, Morvaridi A (2010) Scheduling of scientific workflows using a chaos-genetic algorithm. Procedia Comput Sci Int Conf Comput Sci (ICCS) 1(1):1439–1448

    Google Scholar 

  35. Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4):1715–1734

    Article  MathSciNet  ADS  Google Scholar 

  36. Jordehi AR (2015) Chaotic bat swarm optimisation (CBSO). Appl Soft Comput 26:523–530

    Article  Google Scholar 

  37. Galvez J, Cuevas E, Becerra H, Avalos O (2020) A hybrid optimization approach based on clustering and chaotic sequences. Int J Mach Learn Cybern 11(2):359–401

    Article  CAS  Google Scholar 

  38. Bucolo M, Caponetto R, Fortuna L, Frasca M, Rizzo A (2002) Does chaos work better than noise? IEEE Circuits Syst Mag 2(3):4–19

    Article  Google Scholar 

  39. Snaselova P, Frantisek Z (2015) Genetic algorithm using theory of chaos. Procedia Comput Sci 51:316–325

    Article  Google Scholar 

  40. Ghosh D, Singh J (2021) Spectrum-based multi-fault localization using Chaotic Genetic Algorithm. Inf Softw Technol 133:106512

    Article  Google Scholar 

  41. Huang X, Sun YT, Hong KR (2023) A new uncertain dominance and its properties in the framework of uncertainty theory. Fuzzy Optim Decis Mak. https://doi.org/10.1007/s10700-022-09405-z

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was funded by the Central Universities of China, Grant No. FRF-MP-20-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Definition 2

(Liu [2]) Let \(\text{ L }\) be a \(\sigma\)-algebra over a nonempty set \(\Gamma\). Each element \(\Lambda \in \text{ L }\) is called an event. A set function \(\text{ M } \{\Lambda \}: \text{ L }\rightarrow [0,1]\) is called an uncertain measure if it satisfies the following axioms:

  1. (i)

    (Normality) \(\text{ M } \{\Gamma \}=1\).

  2. (ii)

    (Duality) \(\text{ M } \{\Lambda \}+\text{ M } \{\Lambda ^c\}=1.\)

  3. (iii)

    (Subadditivity) For every countable sequence of events\(\{\Lambda _i\}\),

    $$\begin{aligned} \text{ M }\displaystyle \left\{ \bigcup \limits _{i=1}^{\infty }\Lambda _i\right\} \le \sum \limits _{i=1}^{\infty } \text{ M }\{\Lambda _i\}. \end{aligned}$$

Definition 3

(Liu [2]) An uncertain variable \(\xi\) is a function from an uncertainty space \((\Gamma , \text{ L }, \text{ M})\) to the set of real numbers such that for any Borel set of B of real numbers, the set

$$\begin{aligned} \{\xi \in B\}=\{\gamma \in \Gamma |\xi (\gamma )\in B\} \end{aligned}$$

is an event.

Definition 4

(Liu [18]) An uncertain variable \(\xi\) is called a linear uncertain variable if it has a linear uncertainty distribution function

$$\begin{aligned} \Phi \left( t \right) = \left\{ {\begin{array}{ll} 0, &{} t < e - {\sqrt{3} }\sigma \\ \frac{t-e+{\sqrt{3} }\sigma }{2{\sqrt{3} }\sigma }, &{} e -{\sqrt{3} } \sigma \leqslant t \leqslant e + {\sqrt{3} }\sigma \\ 1, &{} t > e + {\sqrt{3} }\sigma \\ \end{array} } \right. \end{aligned}$$

we denote it by \(\xi \sim L(e -{\sqrt{3} }\sigma ,e+{\sqrt{3} }\sigma ),\) where e and \(\sigma\) are real numbers. The inverse uncertain function of the linear uncertainty distribution function \(\Phi (t)\) is as follows:

$$\begin{aligned} \Phi ^{-1}(\alpha )=e+{\sqrt{3} }( {2\alpha - 1})\sigma ,~0< \alpha <1. \end{aligned}$$

Definition 5

(Liu [18]) An uncertain variable \(\xi\) is called a normal uncertain variable if it has a normal uncertainty distribution function

$$\begin{aligned} \Phi \left( t \right) = \left[ {1 + \exp \left( {\frac{\pi \left( {e - t} \right) }{\sqrt{3} \sigma }} \right) } \right] ^{ - 1},~t \in R~,~\sigma > 0. \end{aligned}$$

we denote it by \(\xi \sim N(e,\sigma )\), and an inverse function of the normal uncertainty distribution function \(\Phi (t)\) is as follows:

$$\begin{aligned} \Phi ^{-1}\left( \alpha \right) = e + \frac{\sqrt{3} }{\pi }\sigma \ln \left( {\frac{\alpha }{1 - \alpha }} \right) ~,~0< \alpha < 1. \end{aligned}$$

Theorem 2

(Liu [18]) Let \(\xi\) be an uncertain variable with a regular uncertainty distribution \(\Phi\). If its expected value exists, then

$$\begin{aligned} E\left[ \xi \right] = \int _0^1 {\Phi ^{ - 1}\left( \alpha \right) d\alpha } \end{aligned}$$

When the uncertain variables are represented by uncertainty distributions, the operational law is given by [18] as follows:

Theorem 3

(Liu [18]) Let \(\xi _1, \xi _2, \cdots ,\xi _n, \xi _{n+1}, \cdots , \xi _{n+m}\) be independent uncertain variables with uncertainty distributions \(\Phi _1, \Phi _2,\cdots , \Phi _n, \Phi _{n+1}, \cdots , \Phi _{n+m},\) respectively. Let \(f(t_1,t_2,\cdots ,t_n)\) be strictly increasing with respect to \(t_1,t_2,\cdots ,t_n,\) and \(g(t_1\), \(t_2\), \(\cdots\), \(t_n\), \(t_{n+1}\), \(\cdots ,t_{n+m})\) be strictly increasing with respect to \(t_1,t_2,\cdots ,t_n\) and strictly decreasing with respect to \(t_{n+1}\), \(t_{n+2}\), \(\cdots\), \(t_{n+m}.\) Then

$$\begin{aligned} \xi =f(\xi _1,\xi _2,\cdots ,\xi _n) \end{aligned}$$

is an uncertain variable with inverse uncertainty distribution function

$$\begin{aligned} \Psi ^{-1}(\alpha )=f(\Phi ^{-1}_1(\alpha ), \Phi ^{-1}_2(\alpha ), \cdots , \Phi ^{-1}_n(\alpha )), \quad 0< \alpha <1, \end{aligned}$$

and

$$\begin{aligned} \eta =g(\xi _1,\xi _2,\cdots ,\xi _n,\xi _{n+1},\cdots ,\xi _{n+m}) \end{aligned}$$

is an uncertain variable with inverse uncertainty distribution function

$$\begin{aligned} \Psi ^{-1}(\alpha )=g(\Phi ^{-1}_1(\alpha ), \cdots , \Phi ^{-1}_n(\alpha ),\Phi ^{-1}_{n+1}(1-\alpha ),\cdots , \Phi ^{-1}_{n+m}(1-\alpha )), \quad 0< \alpha <1, \end{aligned}$$

if \(\Phi _1^{-1}(\alpha ), \Phi _2^{-1}(\alpha ), \cdots , \Phi _n^{-1}(\alpha ),\Phi _{n+1}^{-1}(\alpha ),\cdots ,\Phi _{n+m}^{-1}(\alpha )\) are unique for each \(\alpha \in (0,1).\)

Theorem 4

(Huang [10]) Let \(\xi\) be an uncertain portfolio return with regular uncertainty distribution \(\Phi\), and \(r_0\) is the base reference return rate, and \(\Phi ^{ - 1}\) denote an inverse function of the \(\Phi\). Then the risk index of the portfolio can be calculated via:

$$\begin{aligned} RI\left( \xi \right) = \int _0^\beta {\left( {r_0 - \Phi ^{ \text{- }1}\left( \alpha \right) } \right) } d\alpha , \end{aligned}$$

where \(\beta\) is defined by \(\Phi ^{ - 1}\left( \beta \right) = r_0.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choe, KI., Huang, X. & Ma, D. Uncertain mean-risk index portfolio selection considering inflation: Chaos adaptive genetic algorithm. Int. J. Mach. Learn. & Cyber. 15, 1261–1275 (2024). https://doi.org/10.1007/s13042-023-01966-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-023-01966-8

Keywords

Navigation