Skip to main content
Log in

The Use of Smartphone Applications in the Collection of Travel Behaviour Data

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

The MOVE project deals with the collection and analysis of crowd behaviour data. The main goals of the project are to collect data through the use of mobile phones and to develop new technologies to process and mine the collected data for crowd behaviour analysis. This paper describes the different steps in the development of tracking applications for smartphones that make use of advanced data mining. The results on data collection, analysis, and reporting have led to the development and operation of an advanced urban data monitoring system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brög, W., Erl, E.: “Walking - A Neglected Mode in Transport Surveys”, Proceedings of Australia: Walking the 21st Century; An International Walking Conference

  2. Wolf, J., Hallmark, S., Oliveira, M., Guensler, R., Sarasua, W.: Accuracy issues with route choice data collection by using global positioning system. Transp. Res. Rec. 1660, 66–74 (1999)

    Article  Google Scholar 

  3. Ettema, D.F., Timmermans, H.J.P., van Vegel, L.: “Effects of data collection methods in travel and activity research”, European institute of retailing and services studies. Eindhoven University of Technology, Eindhoven (1996)

    Google Scholar 

  4. Wolf, J., Oliveira, M., Thompson, M.: Impact of underreporting on milega and travel time estimates: results from global positioning system-enhanced household travel survey. Transp. Res. Rec. 1854, 189–198 (1999)

    Article  Google Scholar 

  5. Arentze, T., Dijst, M., Dugundji, E., Chang-Hyeon, J., Kapoen, L., Krygsman, S., Maat, K., Timmermans, H.: New activity diary format: design and limited empirical evidence. Transp. Res. Rec. 1768, 79–88 (2001)

    Article  Google Scholar 

  6. Pearson, D.: A comparison of trip determination methods in GPS-enhanced household travel surveys. 84th Annual Meeting of the Transportation Research Board, Washington, DC (2004)

    Google Scholar 

  7. Schönfelder, S., Axhausen, K.W., Antille, N., Bierlaire, M.: Exploring the potentials of automatically collected GPS data for travel behaviour analysis – a Swedish data source. In: öltgen, J., Wytzisk, E. (eds.) GI-Technologien für Verkehr und Logis-tik, IfGIprints 13, Institut für Geoinformatik, pp. 55–179. Universität Münster, Münster (2002)

    Google Scholar 

  8. Schlich, R., Axhausen, K.W.: Habitual travel behaviour: evidence from a six-week travel diary. Transportation 30, 13–36 (2003)

    Article  Google Scholar 

  9. Steer Davies Gleave and GeoStats, The use of GPS to improve travel data, study report. Prepared for the DTLR New Horizons Programme, Submitted to the London Department for Transport, London (2003)

  10. Ohmori, N., Nakazato, M., Harata, N.: GPS mobile phone-based activity diary survey, Proc. East. Asia Soc. Transp. Stud. 5, 1104–1115 (2005)

    Google Scholar 

  11. Tsui, A., Shalaby, A.: Enhanced system for link and mode identification for personal travel surveys based on global positioning systems. Transp. Res. Rec. 1972, 38–45 (2006)

    Article  Google Scholar 

  12. Stopher, P.R., Collins, A.: Conducting a GPS prompted recall survey over the internet. Paper Presented at 84th Annual Meeting of the Transportation Research Board, Washington, DC (2005)

    Google Scholar 

  13. Asakura, Y., Hato, E.: Tracking survey for individual travel behaviour using mobile communication instruments. Transp. Res. C 12, 273–291 (2004)

    Article  Google Scholar 

  14. Wolf, J., Schönfelder, S., Samaga, U., Oliveira, M., Axhausen, K.W.: 80 weeks of GPS-traces: approaches to enriching the trip information. Transp. Res. Rec. 1870, 46–54 (2004)

    Article  Google Scholar 

  15. Du, J., Aultman-Hall, L.: Increasing the accuracy of trip rate information from passive multi-day GPS travel datasets: automatic trip end identification issues. Transp. Res. A 4(1), 220–232 (2007)

    Google Scholar 

  16. Stopher, P., Clifford, E., Zhang, J., FitzGerald, C.: Deducing Mode and Purpose from GPS data. Working Paper of the Austrian Key Centre” in Transport and Logistics. University of Sydney, Sydney (2008)

    Google Scholar 

  17. Bohte, W., Maat, K.: Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys : a large-scale application in the Netherlands. Transp. Res. C 17(3), 285–297 (2009)

    Article  Google Scholar 

  18. Gong, H., Chen, C., Bialostozky, E., Lawson, C.T.: A GPS/GIS method for travel mode detection in New York City. Comput. Environ. Urban. Syst. 36(2), 131–139 (2011)

    Article  Google Scholar 

  19. Hato, E.: Development of behavioral context addressable loggers in the shell for travel-activity analysis. Transp. Res. C 18, 55–67 (2010)

    Article  Google Scholar 

  20. Chen, C., Gong, H., Lawson, C., Bialostozky, E.: Evaluating the feasibility of a passive travel survey collection in a complex urban environment: lessons learned from the New York City case study. Transp. Res. A 44, 830–840 (2010)

    Google Scholar 

  21. Nitsche, P., Widhalm, P., Breuss, S., Maurer, P.: A strategy on how to utilize smartphones for automatically reconstructing trips in travel surveys. Procedia Soc. Behav. Sci. 48, 1033–1046 (2011)

    Article  Google Scholar 

  22. Auld, J., Williams, C., Mohammadian, K., Nelson, P.: An automated GPS-based prompted recall survey with learning algorithms. Transp. Lett. Int. J. Transp. Res. 1, 59–79 (2009)

    Article  Google Scholar 

  23. Zhou, J., Golledge, R.: Real-time tracking of activity scheduling/schedule execution within a unified data collection framework. Transp. Res. A 41, 444–463 (2007)

    MATH  Google Scholar 

  24. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8(3), 239–354 (1965)

    Article  MathSciNet  Google Scholar 

  25. Charlier, N., De Tré, G., Gautama, S., Bellens, R.: Automating actualisation of geographic information using the twofold fuzzy region model. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 18(3), 247–268 (2010)

    Article  Google Scholar 

  26. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Comm. ACM 15, 11–15 (1972)

    Article  MATH  Google Scholar 

  27. Hough, P.V.C.: “Machine Analysis of Bubble Chamber Pictures”, Proc. Int. Conf. High Energy Accelerators and Instrumentation (1959)

  28. Serra, J.: Image Analysis and Mathematical Morphology (1982)

  29. Soille, P: Morphological Image Analysis; Principles and Applications, 2nd edition (2003)

  30. Gautama, S., Bellens, R., De Tré, G., Philips, W.: Relevance criteria for spatial information retrieval using error-tolerant graph matching. IEEE Trans. Geosci. Remote Sens. 45(4), 49–54 (2007)

    Article  Google Scholar 

  31. Müller, S., Tscharaktschiew, S., Haase, K.: Travel-to-school mode choice modelling and patterns of school choice in urban areas. J. Transp. Geogr. 16, 342–357 (2008)

    Article  Google Scholar 

  32. Papinski, D., Scott, D., Doherty, S.: Exploring the route choice decision-making process: a comparison of planned and observed routes obtained using person-based GPS. Transp. Res. F 12, 347–358 (2009)

    Article  Google Scholar 

  33. Broach, J., Dill, J., Gliebe, J.: Where do cyclists ride? A route choice model developped with revealed preference GPS data. Transp. Res. A 46, 1730–1740 (2012)

    Google Scholar 

  34. Arentze, T., Ettema, D., Timmermans, H.: Estimating a model of dynamic activity generation based on one-day observations : method and results. Transp. Res. B 45, 447–460 (2011)

    Article  Google Scholar 

  35. Kang, H., Scott, D.: Exploring day-to-day variability in time use for household members. Transp. Res. A 44, 609–619 (2010)

    Article  Google Scholar 

  36. Dijst, M., Böcker, L., Kwan, M.: Exposure to weather and implications for travel behaviour: introducing empirical evidence from Europe and Canada. J. Transp. Geogr. 28, 164–166 (2013)

    Article  Google Scholar 

  37. Lee, Y., Hickman, M., Washington, S.: Household type and structure, time-use pattern, and trip chaining behaviour. Transp. Res. A 41, 1004–1020 (2007)

    Google Scholar 

  38. Verkasalo, H., López-Nicolás, C., Molina-Castillo, F.J., Bouwman, H.: Analysis of users and non-users of smartphone applications. Telematics Inform. 27(3), 242–255 (2010)

    Article  Google Scholar 

  39. Boogaard, H., Borgman, F., Kamminga, J., Hoek, G.: Exposure to ultrafine and fine particles and noise during cycling and driving in 11 Dutch cities. Atmos. Environ. 43(27), 4234–4242 (2009)

    Article  Google Scholar 

  40. Dons, E., Int Panis, L., Van Poppel, M., Theunis, J., Willems, H., Torfs, R., Wets, G.: Impact of time–activity patterns on personal exposure to black carbon. Atmos. Environ. 45(21), 3594–3602 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Agency for Innovation by Science and Technology though the Flemish Living Lab for Electric Vehicles ‘Electric Vehicles in Action’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Vlassenroot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlassenroot, S., Gillis, D., Bellens, R. et al. The Use of Smartphone Applications in the Collection of Travel Behaviour Data. Int. J. ITS Res. 13, 17–27 (2015). https://doi.org/10.1007/s13177-013-0076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13177-013-0076-6

Keywords