Skip to main content

Advertisement

Log in

Blended Power Management Strategy Using Pattern Recognition for a Plug-in Hybrid Electric Vehicle

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

The dual power source of a plug-in hybrid electric vehicle (PHEV) requires a high level control strategy in order to establish a power split decision that will minimize fuel consumption while taking full advantage of the embedded source of electrical energy. Literature shows that the optimal control of the power split is greatly influenced by the future trip to be made and that blended strategies are more appropriate regarding battery usage throughout a trip. This paper proposes a blended strategy for a PHEV which uses a driving pattern recognition scheme that allows control adaptation in real-time regarding current driving conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Wirasingha, S.G., Emadi, A.: Classification and review of control strategies for plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 60(1), 111–122 (2011)

    Article  Google Scholar 

  2. Karbowski, D., Rousseau A., Pagerit, S., Sharer, P.: Plug-in vehicle control strategy: from global optimization to real-time application, in Proc. EVS 22, Yokohama, pp. 1–12, (2006)

  3. Yang, C., Li, J., Sun, W., Zhang, B., Gao, Y., Yin, X.: Study on global optimization of plug-in hybrid electric vehicle energy management strategies, in Proc. APPEEC, Chengdu, pp. 1–5, (2010)

  4. Sun, L., Liang, R., Wang, Q.: The control strategy and system preferences of plug-in HEV, in Proc. VPPC, Harbin, pp. 1–5, (2008)

  5. Banvait, H., Anwar, S., Chen, Y.: A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV), in Proc. ACC, St-Louis, pp. 3938–3943, (2009)

  6. Yushan, L., Qingliang, Z., Chenglong, W., Yuanjie, L.: Research on fuzzy logic control strategy for a plug-in hybrid electric city public bus, in Proc. ICMTMA, Changsha, pp. 88–91, (2010)

  7. Li, S.G., Sharkh, S.M., Walsh, F.C., Zhang, C.N.: Energy and battery management of a plug-in series hybrid electric vehicle using fuzzy logic. IEEE Trans. Veh. Technol. 60(8), 3571–3585 (2011)

    Article  Google Scholar 

  8. Yan, Y., Xie, H.: Model predictive control for series–parallel plug-in hybrid electrical vehicle using GPS system, in Proc. ICECE, Yichang, pp. 2334–2337, (2011)

  9. Zhu, Y., Chen, Y., Tian, G., Wu, H., Chen, Q.: A four-step method to design an energy management strategy for hybrid vehicles, in Proc. ACC, Boston, MA, pp. 156–161, (2004)

  10. Huang, B., Wang, Z., Xu, Y.: Multi-objective genetic algorithm for hybrid electric vehicle parameter optimization, in Proc. IEEE/RSJ, Beijing, pp. 5177–5182, (2006

  11. Wu, X., Cao, B., Wen, J., Bian, Y.: Particle swarm optimization for plug-in hybrid electric vehicle control strategy parameter, in Proc. VPPC, Harbin, pp. 1–5, (2008)

  12. Chen, K., Deng, Y., Zhou, F., Sun G., Yuan, Y.: Control strategy optimization for hybrid electric vehicle based on particle swarm and simulated annealing algorithm, in Proc. ICEICE, Wuhan, pp. 2054–2057, (2011)

  13. Rousseau, A., Pagerit, S., Gao, D.: Plug-in hybrid electric vehicle control strategy parameter optimization, in Proc. EVS 23, Anaheim, CA, pp. 1–14, (2007)

  14. Stockar, S., Marano, V., Canova, M., Rizzoni, G., Guzzella, L.: Energy-optimal control of plug-in hybrid electric vehicles for real-world driving cycles. IEEE Trans. Veh. Technol. 60(7), 2949–2961 (2011)

    Article  Google Scholar 

  15. Serrao, L., Onori, S., Rizzoni, G.: ECMS as a realization of Pontryagin’s minimum principle for HEV control, in Proc. ACC, St. Louis, MO, pp. 3964–3969, (2009)

  16. Zhang, M., Yang, Y., Mi, C.C.: Analytical approach for the power management of blended-mode plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 61(4), 1554–1566 (2012)

    Article  Google Scholar 

  17. Gong, Q., Li, Y., Peng, Z.-R.: Trip-based optimal power management of plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 57(6), 3393–3401 (2008)

    Article  Google Scholar 

  18. Gong, Q., Li, Y., Peng, Z.-R.: Trip based optimal power management of plug-in hybrid electric vehicles using gas-kinetic traffic flow model, in Proc. ACC, Seattle, pp. 3225–3230, (2008)

  19. Gong, Q., Li, Y., Peng, Z.: Power management of plug-in hybrid electric vehicles using neural network based trip modeling, in Proc. ACC, St-Louis, pp. 4601–4606, (2009)

  20. Zhang, C., Vahidi, A.: Real-time optimal control of plug-in hybrid vehicles with trip preview, in Proc. ACC, Baltimore, MD, pp. 6917–6922, (2010)

  21. Zhang, C., Vahidi, A., Pisu, P., Li, X., Tennant, K.: Role of terrain preview in energy management of hybrid electric vehicles. IEEE Trans. Veh. Technol. 59(3), 1139–1147 (2010)

    Article  Google Scholar 

  22. Huang, X., Tan, Y., He, X.: An intelligent multifeature statistical approach for the discrimination of driving conditions of a hybrid electric vehicle. IEEE Trans. Intell. Transp. Syst. 12(2), 453–465 (2011)

    Article  Google Scholar 

  23. Langari, R., Won, J.-S.: Intelligent energy management agent for a parallel hybrid vehicle – Part I: system architecture and design of the driving situation identification process. IEEE Trans. Veh. Technol. 54(3), 925–934 (2005)

    Article  Google Scholar 

  24. Park, J., Chen, Z., Kiliaris, L., Kuang, M.L., Masrur, M.A., Phillips, A.M., Murphey, Y.L.: Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion. IEEE Trans. Veh. Technol. 58(9), 4741–4756 (2009)

    Article  Google Scholar 

  25. Murphey, Y.L., Park, J., Chen, Z., Kuang, M.L., Masrur, M.A., Phillips, A.M.: Intelligent hybrid vehicle power control - Part I: machine learning of optimal vehicle power. IEEE Trans. Veh. Technol. 61(8), 3519–3530 (2012)

    Article  Google Scholar 

  26. Driant, T., Fellouah, H., Moreau, S., Desrochers, A., Remaki, L.: Numerical simulation and wind tunnel measurements on a tricycle wheel sub-system. Int. J. of Eng. Syst. Model. Simul. 5(1), 159–167 (2013)

    Google Scholar 

  27. Driant, T., Remaki, L., Fellouah, H., Moreau, S., Desrochers, A.: Aerodynamic study of a tricycle wheel subsystem for drag reduction. J. Fluids Eng. 136(1), 1–7 (2013)

    Article  Google Scholar 

  28. Ehsani, M., Gao, Y., Emadi, A.: Modern electric, hybrid electric, and fuel cell vehicles, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton (2010)

    Google Scholar 

  29. Krishnan, R.: Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press, (2010)

  30. Casanellas, F.: Losses in PWM inverters using IGBTs. IEE Proc.Electr. Power Appl. 141(5), 235–239 (1994)

    Article  Google Scholar 

  31. Infineon Corporation: Automotive IGBT Module - Application Note - Explanation of Technical Information, AN2010-09, (2010)

  32. Infineon Corporation: Technical Information IGBT Module FS800R07A2E3, (2011)

  33. Tremblay, O., Dessaint, L.-A., Dekkiche, A.-I.: A generic battery model for the dynamic simulation of hybrid electric vehicles, in Proc. IEEE VPPC, Arlington, TX, pp. 284–289, (2007)

  34. Gao, L., Liu, S., Dougal, R.A.: Dynamic lithium-ion battery model for system simulation. IEEE Trans. Compon. Packag. Technol 25(3), 495–505 (2002)

    Article  Google Scholar 

  35. Lewis, F.L., Syrmos, V.L.: Dynamic programming, in optimal control, 2nd edn, pp. 315–347. Wiley, New York (1995)

    Google Scholar 

  36. Carlson, T.R., Austin, R.C.: Development of speed correction cycles. Sierra Research Inc, Sacramento (1997). Report SR 97-04-01

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the BRP Corporation and the Automotive Partnership Canada (APC) for supporting and funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Denis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denis, N., Dubois, M.R., Dubé, R. et al. Blended Power Management Strategy Using Pattern Recognition for a Plug-in Hybrid Electric Vehicle. Int. J. ITS Res. 14, 101–114 (2016). https://doi.org/10.1007/s13177-014-0106-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13177-014-0106-z

Keywords

Navigation