Abstract
The dual power source of a plug-in hybrid electric vehicle (PHEV) requires a high level control strategy in order to establish a power split decision that will minimize fuel consumption while taking full advantage of the embedded source of electrical energy. Literature shows that the optimal control of the power split is greatly influenced by the future trip to be made and that blended strategies are more appropriate regarding battery usage throughout a trip. This paper proposes a blended strategy for a PHEV which uses a driving pattern recognition scheme that allows control adaptation in real-time regarding current driving conditions.



















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wirasingha, S.G., Emadi, A.: Classification and review of control strategies for plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 60(1), 111–122 (2011)
Karbowski, D., Rousseau A., Pagerit, S., Sharer, P.: Plug-in vehicle control strategy: from global optimization to real-time application, in Proc. EVS 22, Yokohama, pp. 1–12, (2006)
Yang, C., Li, J., Sun, W., Zhang, B., Gao, Y., Yin, X.: Study on global optimization of plug-in hybrid electric vehicle energy management strategies, in Proc. APPEEC, Chengdu, pp. 1–5, (2010)
Sun, L., Liang, R., Wang, Q.: The control strategy and system preferences of plug-in HEV, in Proc. VPPC, Harbin, pp. 1–5, (2008)
Banvait, H., Anwar, S., Chen, Y.: A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV), in Proc. ACC, St-Louis, pp. 3938–3943, (2009)
Yushan, L., Qingliang, Z., Chenglong, W., Yuanjie, L.: Research on fuzzy logic control strategy for a plug-in hybrid electric city public bus, in Proc. ICMTMA, Changsha, pp. 88–91, (2010)
Li, S.G., Sharkh, S.M., Walsh, F.C., Zhang, C.N.: Energy and battery management of a plug-in series hybrid electric vehicle using fuzzy logic. IEEE Trans. Veh. Technol. 60(8), 3571–3585 (2011)
Yan, Y., Xie, H.: Model predictive control for series–parallel plug-in hybrid electrical vehicle using GPS system, in Proc. ICECE, Yichang, pp. 2334–2337, (2011)
Zhu, Y., Chen, Y., Tian, G., Wu, H., Chen, Q.: A four-step method to design an energy management strategy for hybrid vehicles, in Proc. ACC, Boston, MA, pp. 156–161, (2004)
Huang, B., Wang, Z., Xu, Y.: Multi-objective genetic algorithm for hybrid electric vehicle parameter optimization, in Proc. IEEE/RSJ, Beijing, pp. 5177–5182, (2006
Wu, X., Cao, B., Wen, J., Bian, Y.: Particle swarm optimization for plug-in hybrid electric vehicle control strategy parameter, in Proc. VPPC, Harbin, pp. 1–5, (2008)
Chen, K., Deng, Y., Zhou, F., Sun G., Yuan, Y.: Control strategy optimization for hybrid electric vehicle based on particle swarm and simulated annealing algorithm, in Proc. ICEICE, Wuhan, pp. 2054–2057, (2011)
Rousseau, A., Pagerit, S., Gao, D.: Plug-in hybrid electric vehicle control strategy parameter optimization, in Proc. EVS 23, Anaheim, CA, pp. 1–14, (2007)
Stockar, S., Marano, V., Canova, M., Rizzoni, G., Guzzella, L.: Energy-optimal control of plug-in hybrid electric vehicles for real-world driving cycles. IEEE Trans. Veh. Technol. 60(7), 2949–2961 (2011)
Serrao, L., Onori, S., Rizzoni, G.: ECMS as a realization of Pontryagin’s minimum principle for HEV control, in Proc. ACC, St. Louis, MO, pp. 3964–3969, (2009)
Zhang, M., Yang, Y., Mi, C.C.: Analytical approach for the power management of blended-mode plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 61(4), 1554–1566 (2012)
Gong, Q., Li, Y., Peng, Z.-R.: Trip-based optimal power management of plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 57(6), 3393–3401 (2008)
Gong, Q., Li, Y., Peng, Z.-R.: Trip based optimal power management of plug-in hybrid electric vehicles using gas-kinetic traffic flow model, in Proc. ACC, Seattle, pp. 3225–3230, (2008)
Gong, Q., Li, Y., Peng, Z.: Power management of plug-in hybrid electric vehicles using neural network based trip modeling, in Proc. ACC, St-Louis, pp. 4601–4606, (2009)
Zhang, C., Vahidi, A.: Real-time optimal control of plug-in hybrid vehicles with trip preview, in Proc. ACC, Baltimore, MD, pp. 6917–6922, (2010)
Zhang, C., Vahidi, A., Pisu, P., Li, X., Tennant, K.: Role of terrain preview in energy management of hybrid electric vehicles. IEEE Trans. Veh. Technol. 59(3), 1139–1147 (2010)
Huang, X., Tan, Y., He, X.: An intelligent multifeature statistical approach for the discrimination of driving conditions of a hybrid electric vehicle. IEEE Trans. Intell. Transp. Syst. 12(2), 453–465 (2011)
Langari, R., Won, J.-S.: Intelligent energy management agent for a parallel hybrid vehicle – Part I: system architecture and design of the driving situation identification process. IEEE Trans. Veh. Technol. 54(3), 925–934 (2005)
Park, J., Chen, Z., Kiliaris, L., Kuang, M.L., Masrur, M.A., Phillips, A.M., Murphey, Y.L.: Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion. IEEE Trans. Veh. Technol. 58(9), 4741–4756 (2009)
Murphey, Y.L., Park, J., Chen, Z., Kuang, M.L., Masrur, M.A., Phillips, A.M.: Intelligent hybrid vehicle power control - Part I: machine learning of optimal vehicle power. IEEE Trans. Veh. Technol. 61(8), 3519–3530 (2012)
Driant, T., Fellouah, H., Moreau, S., Desrochers, A., Remaki, L.: Numerical simulation and wind tunnel measurements on a tricycle wheel sub-system. Int. J. of Eng. Syst. Model. Simul. 5(1), 159–167 (2013)
Driant, T., Remaki, L., Fellouah, H., Moreau, S., Desrochers, A.: Aerodynamic study of a tricycle wheel subsystem for drag reduction. J. Fluids Eng. 136(1), 1–7 (2013)
Ehsani, M., Gao, Y., Emadi, A.: Modern electric, hybrid electric, and fuel cell vehicles, 2nd edn. CRC Press, Taylor & Francis Group, Boca Raton (2010)
Krishnan, R.: Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press, (2010)
Casanellas, F.: Losses in PWM inverters using IGBTs. IEE Proc.Electr. Power Appl. 141(5), 235–239 (1994)
Infineon Corporation: Automotive IGBT Module - Application Note - Explanation of Technical Information, AN2010-09, (2010)
Infineon Corporation: Technical Information IGBT Module FS800R07A2E3, (2011)
Tremblay, O., Dessaint, L.-A., Dekkiche, A.-I.: A generic battery model for the dynamic simulation of hybrid electric vehicles, in Proc. IEEE VPPC, Arlington, TX, pp. 284–289, (2007)
Gao, L., Liu, S., Dougal, R.A.: Dynamic lithium-ion battery model for system simulation. IEEE Trans. Compon. Packag. Technol 25(3), 495–505 (2002)
Lewis, F.L., Syrmos, V.L.: Dynamic programming, in optimal control, 2nd edn, pp. 315–347. Wiley, New York (1995)
Carlson, T.R., Austin, R.C.: Development of speed correction cycles. Sierra Research Inc, Sacramento (1997). Report SR 97-04-01
Acknowledgments
The authors wish to thank the BRP Corporation and the Automotive Partnership Canada (APC) for supporting and funding this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Denis, N., Dubois, M.R., Dubé, R. et al. Blended Power Management Strategy Using Pattern Recognition for a Plug-in Hybrid Electric Vehicle. Int. J. ITS Res. 14, 101–114 (2016). https://doi.org/10.1007/s13177-014-0106-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13177-014-0106-z