Skip to main content
Log in

Cross Comparison of Spatial Partitioning Methods for an Urban Transportation Network

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

Partitioning a heterogeneous road network into homogenous subnetworks is one way of solving the problem of high scattering or a hysteresis loop that may be inherent in the empirics of a macroscopic fundamental diagram. This study conducts cross-comparison analysis of two well-studied partitioning methods—(i) community detection through modularity maximization and (ii) normalized cut graph partitioning—to investigate the applicability of these methods. Through a case study using real traffic data recorded by an enormous number of detectors in the Tokyo central business district, we found that both methods work well for the test transportation network; however, undesirable results may be obtained if there is only one bottleneck in a subnetwork, or if there is a drastic change in traffic conditions between adjacent links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. For example, if we choose a value of 100 as the bandwidth, the average is 0.168 and the standard deviation is 0.313, which is low. In such a case, almost all links are disconnected. Meanwhile, a bandwidth of 10,000 leads to an average of 0.992 and standard deviation of 0.018, which would generate almost the same results as the unweighted network. These values would therefore yield undesirable results.

References

  1. Daganzo, C.F.: Urban gridlock: macroscopic modeling and mitigation approaches. Transp. Res. B Methodol. 41(1), 49–62 (2007)

    Article  Google Scholar 

  2. Geroliminis, N., Daganzo, C.F.: Existence of urban-scale macroscopic fundamental diagrams: some experimental findings. Transp. Res. B Methodol. 42(9), 759–770 (2008)

    Article  Google Scholar 

  3. Aboudolas, K., Geroliminis, N.: Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transp. Res. B Methodol. 55, 265–281 (2013)

    Article  Google Scholar 

  4. Geroliminis, N., Haddad, J., Ramezani, M.: Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: a model predictive approach. IEEE Trans. Intell. Transp. Syst. 14(1), 348–359 (2012)

    Article  Google Scholar 

  5. Zheng, N., Waraich, R.A., Axhausen, K.W., Geroliminis, N.: A dynamic cordon pricing scheme combining the macroscopic fundamental diagram and an agent-based traffic model. Transp. Res. A Policy Pract. 46(8), 1291–1303 (2012)

    Article  Google Scholar 

  6. Zheng, N., Rérat, G., Geroliminis, N.: Time-dependent area-based pricing for multimodal systems with heterogeneous users in an agent-based environment. Trans. Res. Part C Emerg. Technol. 62, 133–148 (2016)

    Article  Google Scholar 

  7. Geroliminis, N., Zheng, N., Ampountolas, K.: A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks. Transp. Res. Part C Emerg. Technol. 42, 168–181 (2014)

    Article  Google Scholar 

  8. Chiabaut, N.: Evaluation of a multimodal urban arterial: the passenger macroscopic fundamental diagram. Transp. Res. B Methodol. 81, 410–420 (2015)

    Article  Google Scholar 

  9. Zheng, N., Dantsuji, T., Wang, P., Geroliminis, N.: Macroscopic approach for optimizing road space allocation of bus lanes in multimodal urban networks through simulation analysis. Transp. Res. Rec. J. Transp. Res. Board. 2651, 42–51 (2017)

    Article  Google Scholar 

  10. Loder, A., Ambühl, L., Menendez, M., Axhausen, K.W.: Empirics of multi-modal traffic networks – using the 3D macroscopic fundamental diagram. Transp. Res. Part C Emerg. Technol. 82, 88–101 (2017)

    Article  Google Scholar 

  11. Dantsuji, T.: Simulation-based joint optimization framework for congestion mitigation in multimodal urban network: a macroscopic approach. Presented at 15th world conference on transport research, Mumbai (2019)

  12. Buisson, C., Ladier, C.: Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams. Transp. Res. Rec. J. Transp. Res. Board. 2124(1), 127–136 (2009)

    Article  Google Scholar 

  13. Geroliminis, N., Sun, J.: Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp. Res. B Methodol. 45(3), 605–617 (2011)

    Article  Google Scholar 

  14. Ji, Y., Geroliminis, N.: On the spatial partitioning of urban transportation networks. Transp. Res. B Methodol. 46(10), 1639–1656 (2012)

    Article  Google Scholar 

  15. Ge, Q., Fukuda, D.: A macroscopic dynamic network loading model for multiple-reservoir system. Transp. Res. B Methodol. 126, 502–527 (2019)

    Article  Google Scholar 

  16. Ge, Q., Fukuda, D., Han, K., Song, W.: Reservoir-based surrogate modeling of dynamic user equilibrium. Transp. Res. Procedia. 38, 772–791 (2019)

    Article  Google Scholar 

  17. Saeedmanesh, M., Geroliminis, N.: Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks. Transp. Res. B Methodol. 105, 193–211 (2017)

    Article  Google Scholar 

  18. An, K., Chiu, Y.C., Hu, X., Chen, X.: A network partitioning algorithmic approach for macroscopic fundamental diagram-based hierarchical traffic network management. IEEE Trans. Intell. Transp. Syst. 19(4), 1130–1139 (2018)

    Article  Google Scholar 

  19. Ambühl, L., Loder, A., Zheng, N., Menendez, M.: Approximative network partitioning for MFDs from stationary sensor data. In: Proceedings of the 18th Swiss Transport Research Conference (2018)

  20. Ge, Q., Wang, P., Fukuda, D.: A community detection for identifying neighborhoods. In: Proceedings of the 21st Hong Kong Society for Transportation Studies Conference (2016)

  21. Newman, M.E.: Spectral methods for community detection and graph partitioning. Phys. Rev. E. 88(4), 042822 (2013)

    Article  Google Scholar 

  22. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  23. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E. 69(2), 026113 (2004)

    Article  Google Scholar 

  24. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  25. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  26. Eom, J., Park, M., Heo, T.Y., Huntsinger, L.: Improving the prediction of annual average daily traffic for nonfreeway facilities by applying a spatial statistical method. Transp. Res. Rec. J. Transp. Res. Board. 1968, 20–29 (2006)

    Article  Google Scholar 

  27. Bae, B., Kim, H., Lim, H., Liu, Y., Han, L.D., Freeze, P.B.: Missing data imputation for traffic flow speed using spatio-temporal cokriging. Transp. Res. Part C Emerg. Technol. 88, 124–139 (2018)

    Article  Google Scholar 

  28. Mazloumian, A., Geroliminis, N., Helbing, D.: 2010. The spatial variability of vehicle densities as determinant of urban network capacity. Philosophical transactions of the Royal Society a: mathematical. Phys. Eng. Sci. 368, 4627–4647 (1928)

    Article  Google Scholar 

  29. Wada, K., Satsukawa, K., Smith, M., Akamatsu, T.: Network throughput under dynamic user equilibrium: queue spillback, paradox and traffic control. Transp. Res. B Methodol. 126, 391–413 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI under grant number JP 18 J15178 and by the Committee on Advanced Road Technology, Ministry of Land, Infrastructure, Transport, and Tourism, Japan under grant number #28-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Fukuda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dantsuji, T., Hirabayashi, S., Ge, Q. et al. Cross Comparison of Spatial Partitioning Methods for an Urban Transportation Network. Int. J. ITS Res. 18, 412–421 (2020). https://doi.org/10.1007/s13177-019-00209-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13177-019-00209-x

Keywords