Skip to main content
Log in

Early Detection of a Traffic Flow Breakdown in the Freeway Based on Dynamical Network Markers

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

This paper presents a novel model-free method based on the dynamical network markers (DNM) to detect the traffic flow breakdown at an early transition stage in the context of the freeway connected with an on-ramp under a connected vehicle environment. In this method, the vehicle states are frequently observed at several cells or segments on each lane. By processing the observed data, the standard deviations and the correlation coefficients among the cells are analyzed to determine the dominant cells, the ones that are mostly influenced during the transition. Finally, the standard deviations and absolute values of the correlation coefficients of the dominant cells are combined to form a scalar warning signal, which provides a very strong indication when the traffic is at the critical state. The proposed method is evaluated through simulation on freeway traffic, whose flows are disturbed by the on-ramp merging vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, H., Rudy, K., Li, J., Ni, D.: Calculation of traffic flow breakdown probability to optimize link throughput. Appl. Math. Model. 34(11), 3376–3389 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., Tadaki, S.-i., Yukawa, S.: Traffic jams without bottlenecks–experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 033001 (2008)

    Google Scholar 

  3. Daganzo, C.F., Gayah, V.V., Gonzales, E.J.: Macroscopic relations of urban traffic variables: bifurcations, multivaluedness and instability. Transp. Res. B Methodol. 45(1), 278–288 (2011)

    Google Scholar 

  4. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067 (2001)

    MathSciNet  Google Scholar 

  5. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E. 51(2), 1035–1042 (1995)

    Google Scholar 

  6. Li, T.: Nonlinear dynamics of traffic jams. Physica D. 207(1–2), 41–51 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Kerner, B.S.: Experimental features of the emergence of moving jams in free traffic flow. J. Phys. A Math. Gen. 33(26), L221 (2000)

    MATH  Google Scholar 

  8. Bette, H.M., Habel, L., Emig, T., Schreckenberg, M.: Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow. Phys. Rev. E. 95(1), 012311 (2017)

    Google Scholar 

  9. Chen, C., Wang, Y., Li, L., Hu, J., Zhang, Z.: The retrieval of intra-day trend and its influence on traffic prediction. Transp. Res. Part C Emerg. Technol. 22, 103–118 (2012)

    Google Scholar 

  10. Mahnke, R., Kaupuˇzs, J., Lubashevsky, I.: Probabilistic description of traffic flow. Phys. Rep. 408(1), 1–130 (2005)

    Google Scholar 

  11. Helbing, D., Treiber, M., Kesting, A., Sch¨onhof, M.: Theoretical vs. empirical classification and prediction of congested traffic states. Eur. Phys. J. B. 69(4), 583–598 (2009)

    Google Scholar 

  12. Lorenz, M., Elefteriadou, L.: A Probabilistic Approach to Defining Freeway Capacity and Breakdown. In: Proceedings of the 4th International Symposium on Highway Capacity, Vol. 27, Transportation Research Board Washington, DC, USA, pp. 84–95 (2000)

  13. Persaud, B., Yagar, S., Brownlee, R.: Exploration of the breakdown phenomenon in freeway traffic. Transp. Res. Rec. J. Transp. Res. Board. 1634, 64–69 (1998)

    Google Scholar 

  14. Ahn, S., Cassidy, M.J.: Freeway traffic oscillations and vehicle lanechange maneuvers.In: The 17th International Symposium on Transportation and Traffic Theory, pp. 691–710 (2007)

  15. Laval, J.A., Daganzo, C.F.: Lane-changing in traffic streams. Transp. Res. B Methodol. 40(3), 251–264 (2006)

    Google Scholar 

  16. Flynn, M.R., Kasimov, A.R., Nave, J.-C., Rosales, R.R., Seibold, B.: Self-sustained nonlinear waves in traffic flow. Phys. Rev. E. 79(5), 056113 (2009)

    MathSciNet  Google Scholar 

  17. Kerner, B.: Theory of breakdown phenomenon at highway bottlenecks. Transp. Res. Rec. J. Transp. Res. Board. 1710, 136–144 (2000)

    Google Scholar 

  18. Elefteriadou, L., Roess, R.P., McShane, W.R.: Probabilistic nature of breakdown at freeway merge junctions. Transp. Res. Rec. J. Transp. Res. Board. 1484, 80–89 (1995)

    Google Scholar 

  19. Banks, J.H.: Two-capacity phenomenon at freeway bottlenecks: a basis for ramp metering? Transp. Res. Rec. J. Transp. Res. Board. 1320, 83–90 (1991)

    Google Scholar 

  20. Kerner, B.S., Rehborn, H.: Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 79(20), 4030–4033 (1997)

    Google Scholar 

  21. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting: where we are and where we’re going. Transp. Res. Part C Emerg. Technol. 43, 3–19 (2014)

    Google Scholar 

  22. Okutani, I., Stephanedes, Y.J.: Dynamic prediction of traffic volume through Kalman filtering theory. Transp. Res. B Methodol. 18(1), 1–11 (1984)

    Google Scholar 

  23. Davis, G.A., Nihan, N.L., Hamed, M.M., Jacobson, L.N.: Adaptive forecasting of freeway traffic congestion. Transp. Res. Rec. J. Transp. Res. Board. 1287, 29–33 (1990)

    Google Scholar 

  24. Zheng, W., Lee, D.-H., Shi, Q.: Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transp. Eng. 132(2), 114–121 (2006)

    Google Scholar 

  25. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.-Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

    Google Scholar 

  26. Affonso, C., Sassi, R.J., Ferreira, R.P.: Traffic Flow Breakdown Prediction Using Feature Reduction through Rough-Neuro Fuzzy Networks. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1943–1947 (2011)

  27. Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 79, 1–17 (2017)

    Google Scholar 

  28. Ma, D., Sheng, B., Jin, S., Ma, X., Gao, P.: Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching. IEEE Access. 6, 75629–75638 (2018)

    Google Scholar 

  29. Cai, P., Wang, Y., Lu, G., Chen, P., Ding, C., Sun, J.: A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Trans. Res. Part C Emerg. Technol. 62, 21–34 (2016)

    Google Scholar 

  30. Koshizen, T., Kamal M.A.S., Koike, H.: Traffic Congestion Mitigation Using intelligent driver model (IDM) combined with lane changes-why congestion detection is so needed?, Tech. Rep., SAE Technical Paper (2015)

  31. Disbro, J.E., Frame, M.: Traffic flow theory and chaotic behavior. Transp. Res. Rec. J. Transp. Res Board. 1225, 109–115 (1989)

    Google Scholar 

  32. Shang, P., Li, X., Kamae, S.: Chaotic analysis of traffic time series. Chaos, Solitons Fractals. 25(1), 121–128 (2005)

    MATH  Google Scholar 

  33. Dong, J., Mahmassani, H.S.: Stochastic modeling of traffic flow breakdown phenomenon: application to predicting travel time reliability. IEEE Trans. Intell. Transp. Syst. 13(4), 1803–1809 (2012)

    Google Scholar 

  34. Brilon, W., Geistefeldt, J., Regler, M.: Reliability of freeway traffic flow: a stochastic concept of capacity. In: Proceedings of the 16th International Symposium on Transportation and Traffic Theory, Vol. 125143 (2005)

  35. Evans, J.L., Elefteriadou, L., Gautam, N.: Probability of breakdown at freeway merges using markov chains. Transp. Res. B Methodol. 35(3), 237–254 (2001)

    Google Scholar 

  36. Min, W., Wynter, L.: Real-time road traffic prediction with spatiotemporal correlations. Transp. Res. Part C Emerg. Technol. 19(4), 606–616 (2011)

    Google Scholar 

  37. Kamarianakis, Y., Kanas, A., Prastacos, P.: Modeling traffic volatility dynamics in an urban network. Transp. Res. Rec. J. Transp. Res. Board. 1923, 18–27 (2005)

    Google Scholar 

  38. Chen, L., Liu, R., Liu, Z.-P., Li, M., Aihara, K.: Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep. 2, 342 (2012)

    Google Scholar 

  39. Liu, R., Chen, P., Aihara, K., Chen, L.: Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Sci. Rep. 5, 17501 (2015)

    Google Scholar 

  40. Oya, S., Aihara, K., Hirata, Y.: Forecasting abrupt changes in foreign exchange markets: method using dynamical network marker. New J. Phys. 16(11), 115015 (2014)

    MathSciNet  Google Scholar 

  41. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42, Springer Science & Business Media (2013)

  42. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, Vol. 112, Springer Science & Business Media (2013)

  43. Nakagawa, T., Oku, M., Aihara, K.: Early warning signals by dynamical network markers (in Japanese), Seisan Kenkyu. 68(3):271–274. (2016). https://doi.org/10.11188/seisankenkyu.68.271

  44. Liu, R., Wang, X., Aihara, K., Chen, L.: Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med. Res. Rev. 34(3), 455–478 (2014)

    Google Scholar 

  45. Kamal, M.A.S., Taguchi, S., Yoshimura, T.: Efficient driving on multilane roads under a connected vehicle environment. IEEE Trans. Intell. Transp. Syst. 17(9), 2541–2551 (2016)

    Google Scholar 

  46. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E. 62(2), 1805–1824 (2000)

    MATH  Google Scholar 

  47. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for car-following models. Transp. Res. Rec. J. Transp. Res. Board. 1999, 86–94 (2007)

    Google Scholar 

  48. Wagner, P.: Analyzing fluctuations in car-following. Transp. Res. B Methodol. 46(10), 1384–1392 (2012)

    Google Scholar 

  49. Chen, X., Li, L., Zhang, Y.: A Markov model for headway/spacing distribution of road traffic. IEEE Trans. Intell. Transp. Syst. 11(4), 773–785 (2010)

    Google Scholar 

  50. Treiber, M., Kesting, A., Helbing, D.: Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps. Phys. Rev. E. 74(1), 016123 (2006)

    Google Scholar 

  51. Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. B Methodol. 28(4), 269–287 (1994)

    Google Scholar 

Download references

Acknowledgments

This research is supported in part by JSPS Grant-in-Aids for Scientific Research JP15H05707, and JP18H03774 and CREST, JMPJCR14D2, JST. The authors would like to thank Prof. Martin Treiber, Technical University of Dresden, for his advice on selecting parameters of the traffic flow model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Abdus Samad Kamal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, M., Oku, M., Hayakawa, T. et al. Early Detection of a Traffic Flow Breakdown in the Freeway Based on Dynamical Network Markers. Int. J. ITS Res. 18, 422–435 (2020). https://doi.org/10.1007/s13177-019-00210-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13177-019-00210-4

Keywords

Navigation