Skip to main content
Log in

Developing an Agent-Based Simulator Combining Mesoscopic Traffic Simulator with Dynamic Vehicle Allocation System to Evaluate a Ride-Sharing Service in Urban Area

  • Published:
International Journal of Intelligent Transportation Systems Research Aims and scope Submit manuscript

Abstract

In this study, we developed an advanced agent-based simulator which allows an agent-based mesoscopic traffic simulator to cooperate with a dynamic vehicle allocation system. This simulator can reproduce a dynamic vehicle allocation service in real world through its Web API. We implemented this simulator to evaluate ride-sharing taxi services in Kumamoto City to compare with the conventional taxi services. Based on simulation results, the ride-sharing taxi service is more effective. The average time from booking a ride to arriving at the intended destination was significantly reduced as the number of vehicles increased; however, the average occupancy rate of vehicles decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ambrosino, G., Nelson, J.D., Boero, M., Pettinelli, I.: Enabling intermodal urban transport through complementary services: from flexible mobility services to the shared use mobility agency: workshop 4. Developing inter-modal transport systems. Res. Transp. Econ. 59, 179–184 (2016). https://doi.org/10.1016/j.retrec.2016.07.015

    Article  Google Scholar 

  2. Velaga, N.R., Nelson, J.D., Wright, S.D., Farrington, J.H.: The potential role of flexible transport services in enhancing rural public transport provision. J. Public Transp. 15(1), 111–131 (2012). https://doi.org/10.5038/2375-0901.15.1.7

    Article  Google Scholar 

  3. Martinez, L.M., Correia, G.H.A., Viegas, J.M.: An agent-based simulation model to assess the impacts of introducing a shared-taxi system: an application to Lisbon (Portugal). J. Adv. Transp. 47, 512–525 (2011). https://doi.org/10.1002/atr.1283

    Article  Google Scholar 

  4. Inturri, G., et al.: Multi-agent simulation for planning and designing new shared mobility services. Res. Transp. Econ. 73, 34–44 (2019). https://doi.org/10.1016/j.retrec.2018.11.009

    Article  Google Scholar 

  5. Nguyen-Hoang, P., Yeung, R.: What is paratransit worth? Transp. Res. Part A Policy Pract. 44(10), 841–853 (2010). https://doi.org/10.1016/J.TRA.2010.08.006

    Article  Google Scholar 

  6. Toland, C.: Public Transportation Providers’ Obligations Under the Americans with Disabilities Act (ADA)”, Library of Congress. Congressional Research Service, (2008). https://www.everycrsreport.com/reports/RS22676.html (Accessed Jan 02 2022)

  7. Edwin, Y.: Audit of the City’s paratransit service. Hawai, Report No. 16-02 (2016)

  8. Kent, J.L., Dowling, R.: The future of paratransit and DRT: introducing cars on demand. Transp. Sustain. 8, 391–412 (2016). https://doi.org/10.1108/S2044-994120160000008019/FULL/XML

    Article  Google Scholar 

  9. Barth, M., Shaheen, S.A.: Shared-use vehicle systems: framework for classifying carsharing, station cars, and combined approaches. Transport. Res. Rec. 1791, 105–112 (2002). https://doi.org/10.3141/1791-16

    Article  Google Scholar 

  10. Shaheen, S.A., Cohen, A.P.: Growth in worldwide Carsharing: an international comparison. Transport. Res. Rec. 1992, 81–89 (2007). https://doi.org/10.3141/1992-10

    Article  Google Scholar 

  11. Martínez, L.M., de A. Correia, G.H., Moura, F., Mendes Lopes, M.: Insights into carsharing demand dynamics: outputs of an agent-based model application to Lisbon, Portugal. Int. J. Sustain. Transp. 11(2), 148–159 (2016). https://doi.org/10.1080/15568318.2016.1226997

    Article  Google Scholar 

  12. MLIT: Implementing a new taxi sharing services system. Ministry of Land, Infrastructure, Transport and Tourism, (2021). https://www.mlit.go.jp/report/press/jidosha03_hh_000338.html (Accessed Jan 04 2022)

  13. Abe, R.: Introducing autonomous buses and taxis: quantifying the potential benefits in Japanese transportation systems. Transp. Res. Part A Policy Pract. 126, 94–113 (2019). https://doi.org/10.1016/J.TRA.2019.06.003

    Article  Google Scholar 

  14. Feibel, E.: Paratransit and Urban Public Transport Policy in Low- and Medium-Income Countries: A Csde Study of Istanbul, Turkey. The University of North Carolina at Chapel Hill, Chapel Hill (1987)

    Google Scholar 

  15. Wang, Y., Zheng, B., Lim, E.P.: Understanding the effects of taxi ride-sharing — A case study of Singapore. Comput. Environ. Urban. Syst. 69, 124–132 (2018). https://doi.org/10.1016/J.COMPENVURBSYS.2018.01.006

    Article  Google Scholar 

  16. Krueger, R., Rashidi, T.H., Rose, J.M.: Preferences for shared autonomous vehicles. Transp. Res. Part C Emerg. Technol. 69, 343–355 (2016). https://doi.org/10.1016/J.TRC.2016.06.015

    Article  Google Scholar 

  17. Kim, J., Rasouli, S., Timmermans, H.J.P.: Investigating heterogeneity in social influence by social distance in car-sharing decisions under uncertainty: A regret-minimizing hybrid choice model framework based on sequential stated adaptation experiments. Transp. Res. Part C Emerg. Technol. 85, 47–63 (2017). https://doi.org/10.1016/J.TRC.2017.09.001

    Article  Google Scholar 

  18. Yoon, T., Cherry, C.R., Jones, L.R.: One-way and round-trip carsharing: A stated preference experiment in Beijing. Transp. Res. Part D Transp. Environ. 53, 102–114 (2017). https://doi.org/10.1016/J.TRD.2017.04.009

    Article  Google Scholar 

  19. Bischoff, J., Maciejewsk, M., Nagel, K.: City-wide shared taxis: A simulation study in Berlin. IEEE Conf. Intell. Transp. Syst. Proceed. ITSC. 2018, 275–280 (2018). https://doi.org/10.1109/ITSC.2017.8317926

    Article  Google Scholar 

  20. Carotenuto, P., Monacelli, D., Raponi, G., Turco, M.: A dynamic simulation model of a flexible transport services for people in congested area. Procedia – Soc Behav. Sci. 54, 357–364 (2012). https://doi.org/10.1016/J.SBSPRO.2012.09.755

    Article  Google Scholar 

  21. Horn, M.E.T.: Multi-modal and demand-responsive passenger transport systems: a modelling framework with embedded control systems. Transp. Res. Part A Policy Pract. 36(2), 167–188 (2002). https://doi.org/10.1016/S0965-8564(00)00043-4

    Article  Google Scholar 

  22. Hörl, S., Ruch, C., Becker, F., Frazzoli, E., Axhausen, K.W.: Fleet operational policies for automated mobility: A simulation assessment for Zurich. Transp. Res. Part C Emerg. Technol. 102, 20–31 (2019). https://doi.org/10.1016/J.TRC.2019.02.020

    Article  Google Scholar 

  23. Cich, G., Knapen, L., Maciejewski, M., Yasar, A.U.H., Bellemans, T., Janssens, D.: Modeling demand responsive transport using SARL and MATSim. Procedia Comput. Sci. 109, 1074–1079 (2017). https://doi.org/10.1016/J.PROCS.2017.05.387

    Article  Google Scholar 

  24. Oh, S., Seshadri, R., Azevedo, C.L., Kumar, N., Basak, K., Ben-Akiva, M.: Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore. Transp. Res. Part A Policy Pract. 138, 367–388 (2020). https://doi.org/10.1016/J.TRA.2020.06.004

    Article  Google Scholar 

  25. Cheng, S.F., Nguyen, T.D.: TaxiSim: A multiagent simulation platform for evaluating taxi fleet operations. 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology 2, 14–21 (2011) https://doi.org/10.1109/WI-IAT.2011.138

  26. Balmer, M., Meister, K., Rieser, M., Nagel, K., Axhausen, K.W.: Agent-based simulation of travel demand. Arbeitsberichte Verkehrs- und Raumplan. 504, (2008). https://doi.org/10.3929/ETHZ-A-005626451

  27. Ciari, F., Schuessler, N., Axhausen, K.W.: Estimation of Carsharing demand using an activity-based microsimulation approach: model discussion and some results. Sustain. Transport. 7(1), 70–84 (2012). https://doi.org/10.1080/15568318.2012.660113

    Article  Google Scholar 

  28. Matsunaka, S., Oba, R., Sumikawa, T.: Analyzing social benefits obtained from the spread of shared autonomous vehicle using urban traffic simulation. City Plan. Inst. Japan. 55(2), 115–125 (2020)

    Article  Google Scholar 

  29. Luo, L., Parady, G.T., Takami, K., Harata, N.: Evaluating the impact of autonomous vehicles on accessibility using agent-based simulation - A case study of Gunma prefecture. J. JSCE. 7(1), 100–111 (2019). https://doi.org/10.2208/JOURNALOFJSCE.7.1_100

    Article  Google Scholar 

  30. Kamijo, Y., Luo, L., Parady, G.T., Takami, K., Harata, N.: Scenario evaluation of autonomous vehicle spread using agent-based simulation. JSTE J. Traffic Eng. (Special Issue). 5(2), A_142–A_151 (2019) (In Japanese)

    Google Scholar 

  31. Čertický, M., Jakob, M., Píbil, R., Moler, Z.: Agent-based simulation testbed for on-demand mobility services. Procedia Comput. Sci. 32, 808–815 (2014). https://doi.org/10.1016/J.PROCS.2014.05.495

    Article  Google Scholar 

  32. Nakashima, H., et al.: Concept and implementation of a new public transportation system that unifies the bus and taxi services. J. Japan Soc. Civ. Eng. 71(5), I_875–I_888 (2015). https://doi.org/10.2208/JSCEJIPM.71.I_875 (In Japanese)

    Article  Google Scholar 

  33. Mori, T., Mizokami, S., Kanamori, R., Matsudate, W.: Evaluation of introducing a ride sharing taxi service to urban area using traffic simulation model. J. JSCE D3. 76(5), I_1321–I_1330 (2021). https://doi.org/10.2208/jscejipm.76.5_I_1321 (In Japanese)

    Article  Google Scholar 

  34. Japan Society of Traffic Engineers (JSTE): Standard verification process for traffic flow simulation - Verification Manual. http://www.jste.or.jp/sim/manuals/VfyMan.pdf (Accessed 10 June 2020)

  35. Mizokami, S.: The future of society, cities, and lifestyles with new mobility services integrating autonomous driving and sharing, Report on Technical Research and Development for Road Policy Quality Improvement. Natl. Inst. Land Infrastruct. Manag. 2-27. (In Japanese) (2020)

  36. Nakashima, H. et al.: Smart Access Vehicle Service for Future Regional Mobility. The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, pp. 1-4, (2018)

  37. Ochiai, R.K., Hirata, K., Noda, I.: Usability Evaluation of Smart Access Vehicle Service Using Dispatched Taxi Data in Nagoya City. The 36th Annual Conference of the Japanese Society for Artificial Intelligence, (In Japanese) (2018)

Download references

Funding

This work of research was carried out with the support of grant FY2020 “Technical Research and Development Contribution to Improvement of Road Policy Quality” supported by Ministry of Land, Infrastructure, Transport and Tourism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoshi Mizokami.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, T., Mizokami, S., Kanamori, R. et al. Developing an Agent-Based Simulator Combining Mesoscopic Traffic Simulator with Dynamic Vehicle Allocation System to Evaluate a Ride-Sharing Service in Urban Area. Int. J. ITS Res. 21, 115–128 (2023). https://doi.org/10.1007/s13177-022-00337-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13177-022-00337-x

Keywords

Navigation