Skip to main content

Advertisement

Log in

A novel hybrid genetic algorithm for constrained optimization

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Finding global optimal solution of a non-linear constrained optimization problem with high complexity is a challenge for the researchers. Now days, real coded genetic algorithm (GA) becomes popular to solve them, due to their diversity preserving mechanism. In recent literature it is proved that for solving constrained optimization problem, the real coded GA (LX-PM) that uses Laplace Crossover and Power Mutation, is much efficient. In this paper an attempt is made to improve the performance of LX-PM, hybridizing with Quadratic Approximation. The efficiency and reliability of the design hybrid algorithm is realized through a set of 15 benchmark test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhtar S, Tai K, Ray T (2002) A socio-behavioral simulation model for engineering design optimization. J Eng Optimization, Taylor & Francis 34(4):341–354

    Article  Google Scholar 

  • Chootinan P, Chen A (2006) Constraint handling in genetic algorithms using a gradient-based repair method. Comput Operations Res 33:2263–2281

    Article  MATH  Google Scholar 

  • Coello CA, Mezura ME (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16:193–203

    Article  Google Scholar 

  • Crossley WA and Williams EA (1997) A study of adaptive penalty functions for constrained genetic algorithm based optimization. In AIAA 35th aerospace sciences meeting and exhibit, Reno, Nevada, AIAA paper 97–0083

  • Deb K (1997) A robust optimal design technique for mechanical component design. In: Dasgupta D, and Michalewicz Z (eds) Evolutionary algorithms in engineering applications, Springer, Berlin, pp 497–514

  • Deb K (1998) Optimization for engineering design algorithms and examples. Prentice Hall of India, New Delhi

    Google Scholar 

  • Deb K and Agarwal S (1999) A niched-penalty approach for constraint handling in genetic algorithms. In Proceedings of the ICANNGA, Portoroz, Slovenia

  • Deep K, Das KN (2008) Quadratic approximation based hybrid genetic algorithm for function optimization. AMC, Elsevier 203:86–98

    MATH  Google Scholar 

  • Deep K, Das Kedar Nath (2009) Performance improvement of real coded genetic algorithm with quadratic approximation based hybridization. Int J Intell Def Support Sys, Indersci 2(4):319–334

    Google Scholar 

  • Deep K, Thakur M (2007a) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188(1):895–911

    Article  MathSciNet  MATH  Google Scholar 

  • Deep K, Thakur M (2007b) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193(1):211–230

    Article  MathSciNet  MATH  Google Scholar 

  • Floudas CA, Pardalos PM (1990) A collection of test problems for constrained global optimization algorithms. Belin, Springer

    Book  MATH  Google Scholar 

  • Himmelblau DM (1972) Applied nonlinear programming. McGraw-Hill, New York

    MATH  Google Scholar 

  • Kim JH and Myung H (1996) A two phase evolutionary programming for general constrained optimization problem. In Proceedings of the fifth annual conference on evolutionary programming, San Diego

  • Kim JH, Myung H (1997) Evolutionary programming techniques for constrained optimization problems. IEEE Trans Evol Comput 1(2):129–140

    Article  Google Scholar 

  • Kundu S and Osyczka A (1996) Genetic multi-criteria optimization of structural systems. In: Proceedings of the 19th international congress on theoretical and applied mechanics (ICTAM) Kyoto, Japan, IUTAM, Vol of Abstracts 272

  • Levy AV, Montalvo A (1985) The tunneling algorithm for the global minimization of functions, SIAM. J Sci Stat Comput 6:15–29

    Article  MathSciNet  MATH  Google Scholar 

  • Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Michalewicz Z and Naguib FA (1994) Evolutionary optimization of constrained problems. In Proceedings of the 3rd annual conference on evolutionary programming, World Scientific, pp 98–108

  • Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32

    Article  Google Scholar 

  • Michalewicz Z (1995)Genetic algorithms, numerical optimization and constraints. In: Echelman LJ (ed) Proceedings of the sixth international conference on genetic algorithms, Los Altos, Morgan Kaufmann, pp 151–158

  • Myung H, Kim JH (1996) Hybrid evolutionary programming for heavily constrained problems. Biosystems 38:29–43

    Article  Google Scholar 

  • Saber ME, Ruhul AS, and Daryl LE (2011) Improved genetic algorithm for constrained optimization. In proceeding of international conference on computer engineering & systems (ICCES), pp 111–115

  • Salkin HM (1975) Integer Programming. Edison Wesley, Amsterdam

    MATH  Google Scholar 

  • Schittkowski K (1987) More examples for mathematical programming codes. Lecture notes in economics and mathematical systems, vol 282

  • Orvosh D and Davis L (1995) Using a genetic algorithm to optimize problems with feasibility constraints. In Echelman LJ (ed) Proceedings of the sixth international conference on genetic algorithms, pp 548–552

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusum Deep.

Appendix

Appendix

Problem 1

(Salkin 1975)

$$ \mathop {Max}\limits_{x} f\left( x \right) = 3x_{1} + x_{2} + 2x_{3} + x_{4} - x_{5} $$

Subject to

$$ \begin{gathered} 25x_{1} - 40x_{2} + 16x_{3} + 21x_{4} + x_{5} \le 300 \hfill \\ x_{1} + 20x_{2} - 50x_{3} + x_{4} - x_{5} \le 200 \hfill \\ 60x_{1} + x_{2} - x_{3} + 2x_{4} + x_{5} \le 600 \hfill \\ - 7x_{1} + 4x_{2} + 15x_{3} - x_{4} + 65x_{5} \le 700 \hfill \\ 1 \le x_{1} \le 4;\,80 \le x_{2} \le 88;\,30 \le x_{3} \le 35;\,145 \le x_{4} \le 150;\,0 \le x_{5} \le 2 \hfill \\ \end{gathered} $$

Solution: x = (4, 88, 35, 150, 0)T, \( f^{*} \left( x \right) = 320 \)

Problem 2

(Himmelblau 1972)

$$ \begin{gathered} \mathop {Max}\limits_{x} f\left( x \right) = 25\left( {x_{1} - 2} \right)^{2} + \left( {x_{2} - 2} \right)^{2} + \left( {x_{3} - 1} \right)^{2} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left( {x_{4} - 4} \right)^{2} + \left( {x_{5} - 1} \right)^{2} + \left( {x_{6} - 4} \right)^{2} \hfill \\ \end{gathered} $$

Subject to

$$ \begin{gathered} x_{1} + x_{2} - 2 \ge 0 \hfill \\ 6 - x_{1} + x_{2} \ge 0 \hfill \\ 2 + x_{1} - x_{2} \ge 0 \hfill \\ 2 - x_{1} + 3x_{2} \ge 0 \hfill \\ \left( {x_{3} - 3} \right)^{2} + x_{4} - 4 \ge 0 \hfill \\ \left( {x_{5} - 3} \right)^{2} + x_{6} - 4 \ge 0 \hfill \\ \end{gathered} $$
$$ \begin{gathered} 0 \le x_{1} \le 5;\,0 \le x_{2} \le 1;\,1 \le x_{3} \le 5;\,0 \le x_{4} \le 6;\, \hfill \\ 0 \le x_{5} \le 5;\,0 \le x_{6} \le 10; \hfill \\ \end{gathered} $$

.

Solution: x = (5, 1, 5, 0, 5, 10)T, \( f^{*} \left( x \right) = 310 \)

Problem 3

(Schittkowski 1987)

$$ \mathop {Min}\limits_{x} f\left( x \right) = \left( {x_{1}^{2} + x_{2} - 11} \right)^{2} + \left( {x_{1}^{{}} + x_{2}^{2} - 7} \right)^{2} $$

Subject to

$$ \begin{gathered} 4.84 - \left( {x_{1} - 0.05} \right)^{2} - \left( {x_{2} - 2.5} \right)^{2} \ge 0 \hfill \\ x_{1}^{2} + \left( {x_{2} - 2.5} \right)^{2} - 4.84 \ge 0 \hfill \\ \end{gathered} $$
$$ 0 \le x_{1} \le 6;\,0 \le x_{2} \le 6 $$

Solution: x = (2.246826, 2.381865)T, \( f^{*} \left( x \right) = 1 3. 5 90 8 5 \)

Problem 4

(Michalewicz 1996)

$$ \begin{gathered} \,\mathop {Min}\limits_{x} f\left( x \right) = \left( {x_{1} - 10} \right)^{2} + 5\left( {x_{2} - 12} \right)^{2} + x_{3}^{4} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 3\left( {x_{4} - 11} \right)^{2} \,\, + 10x_{5}^{6} + 7x_{6}^{2} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + x_{7}^{4} - 4x_{6} x_{7}^{{}} - 10x_{6} - 8x_{7}^{{}} \hfill \\ \end{gathered} $$

Subject to

$$ \begin{gathered} 127 - 2x_{1}^{2} - 3x_{2}^{4} - x_{3} - 4x_{4}^{2} - 5x_{5} \ge 0 \hfill \\ 282 - 7x_{1} - 3x_{2} - 10x_{3}^{2} - x_{4} + x_{5} \ge 0 \hfill \\ 196 - 23x_{1} - x_{2}^{2} - 6x_{6}^{2} + 8x_{7} \ge 0 \hfill \\ - 4x_{1}^{2} - x_{2}^{2} + 3x_{1} x_{2} - 2x_{3}^{2} - 5x_{6} + 11x_{7} \ge 0 \hfill \\ - 10 \le x_{i} \le 10,i = 1,2 \ldots ,7. \hfill \\ \end{gathered} $$

Solution: x = (2.330499, 1.951372, −0.4775414, 4.365726, −0.6244870, 1.038131, 1.594227)T \( f^{*} \left( x \right) = 6 80. 6 300 5 7 3 \)

Problem 5

(Floudas and Pardalos 1990)

$$ \mathop {Min}\limits_{x} f\left( x \right) = x_{1}^{0.6} + x_{2}^{0.6} + x_{3}^{0.4} + 2x_{4} + 5x_{5} - 4x_{3} - x_{6} $$

Subject to

$$ \begin{gathered} x_{2} - 3x_{1} - 3x_{4} = 0 \hfill \\ x_{3} - 2x_{2} - 3x_{5} = 0 \hfill \\ 4x_{4} - x_{6} = 0 \hfill \\ x_{1} + 2x_{4} - 4 \le 0 \hfill \\ x_{2} + x_{5} - 4 \le 0 \hfill \\ x_{3} + x_{6} - 6 \le 0 \hfill \\ \end{gathered} $$
$$ \begin{gathered} 0 \le x_{1} \le 3;\,0 \le x_{2} \le 4;\,1 \le x_{3} \le 4;\,0 \le x_{4} \le 2;\, \hfill \\ 0 \le x_{5} \le 2;\,0 \le x_{6} \le 6; \hfill \\ \end{gathered} $$

Solution: x = (0.67, 2, 4, 0, 0, 0)T, \( f^{*} \left( x \right) = - 1 1. 9 6 \)

Problem 6

(Levy and Montalvo 1985)

$$ \mathop {Min}\limits_{x} f\left( x \right) = - x_{1} - x_{2} $$

Subject to

$$ \begin{gathered} x_{2} \le 2 + 2x_{1}^{4} - 8x_{1}^{3} + 8x_{1}^{2} \hfill \\ x_{2} \le 4x_{1}^{4} - 32x_{1}^{3} + 88x_{1}^{2} - 96x_{1} + 36 \hfill \\ \end{gathered} $$
$$ 0 \le x_{1} \le 3;\,0 \le x_{2} \le 4 $$

Solution: x = (2.3295, 3.1783)T, \( f^{*} \left( x \right) = - 5. 50 7 8 \)

Problem 7

(Floudas and Pardalos 1990)

$$ \mathop {Min}\limits_{x} f\left( x \right) = - 12x_{1} - 7x_{2} + x_{2}^{2} $$

Subject to

$$ - 2x_{1}^{4} - x_{2} + 2 = 0 $$
$$ 0 \le x_{1} \le 2;\,0 \le x_{2} \le 3 $$

Solution: x = (0.7175, 1.47)T, \( f^{*} \left( x \right) = - 1 6. 7 3 9 1 \)

Problem 8

(Michalewicz 1996)

$$ \begin{gathered} \mathop {\,Min}\limits_{x} f\left( x \right) = \,\,3x_{1} \, + \,0.000001\,x_{1}^{3} \, + \,2\,x_{2} \, \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \,\left( {0.000002\,/\,3} \right)\,x_{2}^{3} \hfill \\ \end{gathered} $$

Subject to

$$ \begin{gathered} x_{4} - x_{3} + 0.55 \ge 0 \hfill \\ x_{3} - x_{4} + 0.55 \ge 0 \hfill \\ 1000\sin ( - x_{3} - 0.25) + 1000\sin ( - x_{4} - 0.25) + 894.8 - x_{1} = 0 \hfill \\ 1000\sin (x_{3} - 0.25) + 1000\sin (x_{3} - x_{4} - 0.25) + 894.8 - x_{2} = 0 \hfill \\ 1000\sin (x_{4} - 0.25) + 1000\sin (x_{4} - x_{3} - 0.25) + 1294.8 = 0 \hfill \\ \end{gathered} $$
$$ 0 \le x_{i} \le 1200,\,\,i = 1,\,2;\, - 0.55 \le x_{i} \le 0.55,\,\,i = 3,4 $$

Solution: x = (679.9453, 1,026.067, 0.1188764, −0.3962336)T, \( f^{*} \left( x \right) = 5 1 2 6. 4 9 8 1 \)

Problem 9, 10, 11

(Michalewicz and Naguib 1994)

$$ \mathop {Min}\limits_{x} f\left( x \right) = \left\{ \begin{gathered} f_{1} = x{}_{2} + 10^{ - 5} (x_{2} - x_{1} )^{2} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,0 \le x_{1} < 2 \hfill \\ f_{2} = \frac{1}{27\sqrt 3 }\left( {\left( {x_{1} - 3} \right)^{2} - 9} \right)x_{2}^{3} \,\,\,\,\,\,\,\,\,if\,\,2 \le x_{1} < 4 \hfill \\ f_{3} = \frac{1}{3}\left( {x_{1} - 2} \right)^{3} + x_{2} - \frac{11}{3}\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,4 \le x_{1} \le 6 \hfill \\ \end{gathered} \right\} $$

Subject to

$$ \begin{gathered} \frac{{x_{1} }}{\sqrt 3 } - x_{2} \, \ge \,0 \hfill \\ - x_{1} - \sqrt 3 x_{2} + 6\, \ge \,0 \hfill \\ \end{gathered} $$
$$ 0 \le x_{2} \le 5 $$

Solution: x = (0, 0) T, (3, \( \sqrt 3 \))T, (4, 0)T, \( f^{*} \left( x \right) = - 1 \)

Problem 12

(Kim and Myung 1996)

$$ \mathop {Min}\limits_{x} f\left( x \right) = 100\left( {x_{2} - x_{1}^{2} } \right)^{2} + \left( {1 - x_{1} } \right)^{2} $$

Subject to

$$ \begin{gathered} - x_{1} - x_{2}^{2} \le 0 \hfill \\ - x_{1}^{2} - x_{2}^{{}} \le 0 \hfill \\ \end{gathered} $$
$$ - 0.5 \le x_{1} \le 0.5;\;0 \le x_{2} \le 1 $$

Solution: x = (0.5, 0.25) T, \( f^{*} \left( x \right) = 0. 2 5 \)

Problem 13

(Kim and Myung 1996)

$$ \mathop {Min}\limits_{x} f\left( x \right) = 0.01 \times \left( {x_{1}^{2} + x_{2}^{2} } \right) $$

Subject to

$$ \begin{gathered} - x_{1} x_{2} + 25 \le 0 \hfill \\ - x_{1}^{2} - x_{2}^{2} + 25 \le 0 \hfill \\ \end{gathered} $$
$$ 2 \le x_{1} \le 50;\,0 \le x_{2} \le 50 $$

Solution: x = \( \left( {\sqrt {250} ,\sqrt {250} } \right)^{T} \), \( f^{*} \left( x \right) = 0. 5 \)

Problem 14

(Chootinan and Chen 2006)

$$ \mathop {Max}\limits_{x} f\left( x \right) = \frac{{\sin^{3} \left( {2\pi x_{1} } \right)\sin \left( {2\pi x_{2} } \right)}}{{x_{1}^{3} \left( {x_{1} + x_{2} } \right)}} $$

Subject to

$$ \begin{gathered} x_{1}^{2} - x_{2}^{{}} + 1 \le 0 \hfill \\ 1 - x_{1} + \left( {x_{2} - 4} \right)^{2} \le 0 \hfill \\ \end{gathered} $$
$$ 0 \le x_{1} \le 10;\,0 \le x_{2} \le 10 $$

Solution: x = (1.2279713, 4.2453733)T, \( f^{*} \left( x \right) = 0.0 9 5 8 2 5 \)

Problem 15

(Michalewicz and Schoenauer 1996)

$$ \mathop {Min}\limits_{x} f\left( x \right) = \left( {x_{1} - 10} \right)^{3} + \left( {x_{2} - 20} \right)^{3} $$

Subject to

$$ \begin{gathered} \left( {x_{1} - 5} \right)^{2} + \left( {x_{2} - 5} \right) - 100 \ge 0 \hfill \\ - \left( {x_{1} - 6} \right)^{2} - \left( {x_{2} - 5} \right) + 82.82 \ge 0 \hfill \\ \end{gathered} $$
$$ 13 \le x_{1} \le 100;\,0 \le x_{2} \le 100 $$

Solution: x = (14.095, 0.84296)T, \( f^{*} \left( x \right) = -6 9 6 1. 8 1 3 8 1 \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deep, K., Das, K.N. A novel hybrid genetic algorithm for constrained optimization. Int J Syst Assur Eng Manag 4, 86–93 (2013). https://doi.org/10.1007/s13198-012-0142-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-012-0142-5

Keywords

Navigation