Skip to main content

Advertisement

Log in

Some philosophical issues in modeling corrosion of oil and gas pipelines

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

For the efficient design, installation, operation and maintenance of a plant, a reliable and robust mathematical model for predicting corrosion in pipelines can be a valuable asset. Such a model can help a plant supervisor to cut down on the expenditure arising from frequent inspections and unnecessary maintenance shutdowns and to take preventive maintenance action before an accident actually takes place. This paper discusses some of the philosophical issues related to the development of such a model. It also brings to the fore the limitations and value of such a model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahammed M (1997) Prediction of remaining strength of corroded pressurised pipelines. Int J Press Vessels Pip 71:213–217

    Article  Google Scholar 

  • Ahammed M (1998) Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects. Int J Press Vessels Pip 75:321–329

    Article  Google Scholar 

  • Ahammed M, Melchers RE (1995) Probabilistic analysis of pipelines subjected to pitting corrosion leaks. Eng Struct 17:74–80

    Article  Google Scholar 

  • Ahammed M, Melchers RE (1996) Reliability estimation of pressurised pipelines subject to localised corrosion defects. Int J Press Vessels Pip 69:267–272

    Article  Google Scholar 

  • Ahammed M, Melchers RE (1997) Probabilistic analysis of underground pipelines subject to combined stresses and corrosion. Eng Struct 19:988–994

    Article  Google Scholar 

  • Anoop MB, Rao KB, Rao TVSRA (2002) Application of fuzzy sets for estimating service life of reinforced concrete structural members in corrosive environment. Eng Struct 24:1229–1242

    Article  Google Scholar 

  • Beven K (2002) Towards a coherent philosophy for modelling the environment. Proc R Soc Lond A 458:2465–2484

    Article  MATH  MathSciNet  Google Scholar 

  • Bozzini B, Ricotti ME, Boniardi M, Mele C (2003) Evaluation of erosion–corrosion in multiphase flow via CFD and experimental analysis. Wear 255:237–245

    Article  Google Scholar 

  • Bucolo M, Fortuna L, Nelke M, Rizzo A, Sciacca T (2002) Prediction models for the corrosion phenomena in pulp & paper plant. Control Eng Pract 10:227–237

    Article  Google Scholar 

  • Chalmers AF (2005) What is this thing called science? 3rd edn. Open University Press, New York

    Google Scholar 

  • Crowe MJ (1999) Pierre Duhem, the history and philosophy of physics, and the teaching of physics. Phys Perspect 1:54–64

    Article  MathSciNet  Google Scholar 

  • Darling KM (2002) The complete Duhemian underdetermination argument: scientific language and practice. Stud Hist Philos Sci 33:511–533

    Article  Google Scholar 

  • Dayalan E, Vani G, Shadley JR, Shirazi SA, Rybicki EF (1995) Modeling CO2 corrosion of carbon steel in pipe flow. In: Proceedings of the CORROSION ‘95, NACE International, paper no. 118

  • de Marsily G, Combes P, Goblet P (1992) Comment on ‘Ground-water models cannot be validated’, by L.F. Konikow and J.D. Bredehoeft. Adv Water Resour 15(6):367–369

    Article  Google Scholar 

  • de Waard C, Lotz U (1993) Prediction of CO2 corrosion of carbon steel. In: Proceedings of the CORROSION ‘93, NACE International, paper no. 69

  • de Waard C, Milliams DE (1975) Carbonic acid corrosion of carbon steel. Corrosion 31:177

    Article  Google Scholar 

  • de Waard C, Lotz U, Milliams DE (1991) Predictive model for CO2 corrosion engineering in wet natural gas pipelines. Corrosion 47:976–985

    Article  Google Scholar 

  • Det Norske Veritas (DNV) (2004) Corroded pipelines, recommended practice DNV-RP-F101. DNV, Høvik

  • Dugstad A, Lunde L, Videm K (1994) Parametric study of CO2 corrosion of carbon steel. In: Proceedings of the CORROSION ‘94, NACE International, paper no. 14

  • Edwards JD, Sydberger T, Mork KJ (1996) Reliability based design of CO2-corrosion control. In: Proceedings of the CORROSION ‘96, NACE International, paper no. 29

  • Føllesdal D (1994) Hermeneutics and the hypothetico-deductive method. In: Martin M, McIntyre LC (eds) Readings in the philosophy of social science. MIT Press, Cambridge, pp 233–245

    Google Scholar 

  • Guimaraes ACF (2003) A new methodology for the study of FAC phenomenon based on a fuzzy rule system. Ann Nucl Energy 30:853–864

    Article  MathSciNet  Google Scholar 

  • Gunaltun YM (1996) Combining research and field data for corrosion rate prediction. In: Proceedings of the CORROSION ‘96, NACE International, paper no. 27

  • Healy MJR (1978) Is statistics a science? J R Stat Soc A141(3):385–393

    Google Scholar 

  • Hellevik SG, Langen I, Sorensen JD (1999) Cost optimal reliability based inspection and replacement planning of piping subjected to CO2 corrosion. Int J Press Vessels Pip 76:527–538

    Article  Google Scholar 

  • Hoffmann JP (2005) Darwin and computational ecology: how simple models of evolution help our search for better models of ecological systems. In: Proceedings of the 1st open international conference on modeling & simulation, 12–15 June ISIMA/Blaise Pascal University, France

  • Hong HP (1999) Inspection and maintenance planning of pipeline under external corrosion considering generation of new defects. Struct Saf 21:203–222

    Article  Google Scholar 

  • International Organization for Standardization (ISO) (1995) Guide to the expression of uncertainty in measurement

  • Jakeman AJ, Letcher RA, Norton JP (2006) Ten iterative steps in development and evaluation of environmental models. Environ Model Softw 21:602–614

    Article  Google Scholar 

  • Javaherdashti R (2000) A fuzzy approach to model risk of MIC in a cathodically-protected pipe. Anti-corros Methods Mater 47(3):142–146

    Article  Google Scholar 

  • Jepson WP, Bhongale S, Gopal M (1996) Predictive model for sweet corrosion in horizontal multiphase slug flow. In: Proceedings of the CORROSION ‘96, NACE International, paper no. 19

  • Kerlinger FN (1986) Foundations of behavioural research, 3rd edn. Holt, Rinehart and Winston Publishers, New York. ISBN 0030417619

  • Kirchsteiger C (1999) On the use of probabilistic and deterministic methods in risk analysis. J Loss Prev Process Ind 12:399–419

    Article  Google Scholar 

  • Klir GJ (2004) Generalized information theory: aims, results, and open problems. Reliab Eng Syst Saf 85:21–38

    Article  Google Scholar 

  • Klir GJ, Harmanec D (1996) Generalized information theory: recent developments. Kybernetes 25(7/8):50–67

    Article  Google Scholar 

  • Klir GJ, Smith RM (2001) On measuring uncertainty and uncertainty-based information: recent developments. Ann Math Artif Intell 32:5–33

    Article  MathSciNet  Google Scholar 

  • Krzysztofowicz R (2001) The case for probabilistic forecasting in hydrology. J Hydrol 249:2–9

    Article  Google Scholar 

  • Kuhn TS (1996) The structure of scientific revolutions. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kundu S, Chen J (1998) Fuzzy logic or Lukasiewicz logic: a clarification. Fuzzy Sets Syst 95:369–379

    Article  MATH  MathSciNet  Google Scholar 

  • Lawson K (2005) Pipeline corrosion risk analysis—an assessment of deterministic and probabilistic methods. Anti-corros Methods Mater 52:3–10

    Article  Google Scholar 

  • Ligorio T (2004) Postmodernism and fuzzy systems. Kybernetes 33(8):1312–1319

    Article  Google Scholar 

  • Massoud TF, Hademenos GJ, Young WL, Gao E, Pile-Spellman J, Vinuela F (1998) Principles and philosophy of modeling in biomedical research. FASEB J 12:275–285

    Google Scholar 

  • Melchers RE (2001) Structural reliability analysis and prediction. Wiley, New York

    Google Scholar 

  • Najjaran H, Sadiq R, Rajani BB (2006) Fuzzy expert system to assess corrosion of cast/ductile iron pipes from backfill properties, Report no. NRCC-46912, National Research Council of Canada

  • Negoita CV (2002) Postmodernism, cybernetics and fuzzy set theory. Kybernetes 31(7/8):1043–1049

    Article  Google Scholar 

  • Nesic S, Lee K-LJ (2003) A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 3: film growth model. Corrosion 59(7):616–628

    Article  Google Scholar 

  • Nesic S, Vrhovac M (1999) A neural network model for CO2 corrosion of carbon steel. J Corros Sci Eng 1, paper no. 6

  • Nesic S, Pots BFM, Postlethwaite J, Thevenot N (1995) Superposition of diffusion and chemical reaction controlled limiting currents—application to CO2 corrosion. J Corros Sci Eng 1, paper no. 3

  • Nesic S, Nordsveen M, Maxwell N, Vrhovac M (2001) Probabilistic modeling of CO2 corrosion laboratory data using neural networks. Corros Sci 43:1373–1392

    Article  Google Scholar 

  • Nesic S, Nordsveen M, Nyborg R, Stangeland A (2003) A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 2: a numerical experiment. Corrosion 59(6):489–497

    Article  Google Scholar 

  • Nesic S, Wang S, Cai J, Xiao Y (2004a) Integrated CO2 corrosion—multiphase flow model. In: Proceedings of the CORROSION 2004, NACE International, paper no. 04626

  • Nesic S, Xiao Y, Pots BFM (2004b) A quasi 2-D localized corrosion model. In: Proceedings of the CORROSION 2004, NACE International, paper no. 04628

  • Nesic S, Cai J, Lee K-LJ (2005) A multiphase flow and internal corrosion prediction model for mild steel pipelines. In: Proceedings of the CORROSION 2005, NACE International, paper no. 05556

  • Nordsveen M, Nesic S, Nyborg R, Stangeland A (2003) A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification. Corrosion 59(5):443–456

    Article  Google Scholar 

  • NORSOK Standard M-506 (2005) CO2 corrosion rate calculation model. Standards Norway, Lysaker

  • Nyborg R (2005) Controlling internal corrosion in oil and gas pipelines. Oil Gas Rev Bus Briefing Explor Prod 2:70–74

    Google Scholar 

  • Nyborg R, Andersson P, Nordsveen M (2000) Implementation of CO2 corrosion models in a three-phase fluid flow model. In: Proceedings of the CORROSION 2000, NACE International, paper no. 00048

  • Oreskes N (1998) Evaluation (not validation) of quantitative models. Environ Health Perspect 106(6):1453–1460

    Article  Google Scholar 

  • Oreskes N (2000) Why believe a computer? Models, measures, and meaning in the natural world. In: Schneiderman JS (ed) Earth around us: maintaining a liveable plant. W.H. Freeman and Co., San Francisco, pp 70–82

    Google Scholar 

  • Oreskes N (2003) The role of quantitative models in science. In: Canham CD, Cole JJ, Lauenroth WK (eds) Models in ecosystem science. Princeton University Press, Princeton, pp 13–31

    Google Scholar 

  • Oreskes N, Belitz K (2001) Philosophical issues in model assessment. In: Anderson MG, Bates PD (eds) Model validation: perspectives in hydrological science. Wiley, New York, pp 23–41

    Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646

    Article  Google Scholar 

  • Petermeier H, Benning R, Delgado A, Kulozik U, Hinrichs J, Becker T (2002) Hybrid model of the fouling process in tubular heat exchangers for the dairy industry. J Food Eng 55:9–17

    Article  Google Scholar 

  • Popper K (2002) Science: conjectures and refutations. In: Balashov Y, Rosenberg A (eds) Philosophy of science: contemporary readings. Routledge, London, pp 294–301

    Google Scholar 

  • Refsgaard JC, Henriksen HJ (2004) Modeling guidelines—terminology and guiding principles. Adv Water Resour 27:71–82

    Article  Google Scholar 

  • Reznik L, Pham B (2001) Fuzzy models in evaluation of information uncertainty in engineering and technology applications. In: Proceedings of the 10th IEEE international conference on fuzzy system (FUZZ-IEEE’01), Melbourne, Australia, pp 972–975

  • Ross TJ (2004) Fuzzy logic with engineering applications. Wiley, Chichester

    MATH  Google Scholar 

  • Scarf PA (1997) On the application of mathematical models in maintenance. Eur J Oper Res 99(3):493–506

    Article  MATH  MathSciNet  Google Scholar 

  • Schmitt G, Bosch C, Mueller M, Siegmund G (2000) A probabilistic model for flow induced localized corrosion. In: Proceedings of the CORROSION 2000, NACE International, paper no. 00049

  • Shimizu K, Noguchi T, Seitoh H, Okada M, Matsubara Y (2001) FEM analysis of erosive wear. Wear 250:779–784

    Article  Google Scholar 

  • Singh M, Markeset T (2007) Risk analysis of oil and gas pipelines subjected to CO2 corrosion. In: Proceedings of the ESREL 2007 conference, Stavanger, Norway, 25–27 June

  • Smets P (1998) Theories of uncertainty. In: Ruspini E, Bonissone P, Pedrycz W (eds) Handbook of fuzzy computation. Oxford University Press/IOP Publishing, Oxford/Bristol

    Google Scholar 

  • Snyder LJ (2004) Sherlock Holmes: scientific detective. Endeavour 28(3):104–108

    Article  Google Scholar 

  • Srinivasan S, Kane RD (1996) Prediction of corrosivity of CO2/H2S production environments. In: Proceedings of the CORROSION ‘96, NACE International, paper no. 11

  • van der Helm R (2006) Towards a clarification of probability, possibility and plausibility: how semantics could help futures practice to improve. Foresight 8(3):17–27

    Article  Google Scholar 

  • Vitse F, Nesic S, Gunaltun Y, de Torreben DL, Duchet-Suchaux P (2003) Mechanistic model for the prediction of top-of-the-line corrosion risk. In: Proceedings of the CORROSION 2003, NACE International, paper no. 03633

  • Wagener T, Kollat J (2007) Numerical and visual evaluation of hydrological and environmental models using the Monte Carlo analysis toolbox. Environ Model Softw 22:1021–1033

    Article  Google Scholar 

  • Wang Y (1997) Flow-dependent corrosion in turbulent pipe flow. Ph.D. Thesis, Department of Chemical Engineering, University of Saskatoon, Canada

  • Wang H, Cai J-Y, Jepson WP (2002) CO2 corrosion mechanistic modeling and prediction in horizontal slug flow. In: Proceedings of the CORROSION 2002, NACE International, paper no. 02238

  • Way EC (2001) The role of computation in modeling evolution. BioSystems 60:85–94

    Article  Google Scholar 

  • Wierzbicki AP (2007) Modeling as a way of organising knowledge. Eur J Oper Res 176:610–635

    Article  MATH  Google Scholar 

  • Xiao Y, Nesic S (2005) A stochastic prediction model of localized CO2 corrosion. In: Proceedings of the CORROSION 2005, NACE International, paper no. 05057

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern SMC-3:28-44

    Google Scholar 

  • Zadeh LA (1975a) The concept of a linguistic variable and its applications to approximate reasoning-I. Inf Sci 8:199–249

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh LA (1975b) The concept of a linguistic variable and its applications to approximate reasoning-II. Inf Sci 8:301–357

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh LA (1975c) The concept of a linguistic variable and its applications to approximate reasoning-III. Inf Sci 9:43–80

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh LA (2002) From computing with numbers to computing with words—from manipulation of measurements to manipulation of perceptions. Int J Appl Math Comput Sci 12(3):307–324

    MATH  MathSciNet  Google Scholar 

  • Zadeh LA (2005) Toward a generalized theory of uncertainty (GTU)—an outline. Inf Sci 172:1–40

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh LA (2006) Generalized theory of uncertainty (GTU)—principal concepts and ideas. Comput Stat Data Anal 51:15–46

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang R, Gopal M, Jepson WP (1997) Development of a mechanistic model for predicting corrosion rate in multiphase oil/water/gas flows. In: Proceedings of the CORROSION ‘97, NACE International, paper no. 601

  • Zimmermann H-J (2000) An application-oriented view of modeling uncertainty. Eur J Oper Res 122:190–198

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesh Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Markeset, T. & Kumar, U. Some philosophical issues in modeling corrosion of oil and gas pipelines. Int J Syst Assur Eng Manag 5, 55–74 (2014). https://doi.org/10.1007/s13198-013-0192-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-013-0192-3

Keywords