Skip to main content
Log in

Stochastic behaviour analysis of a Markov model under multi-state failures

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

To solve a real problem, how to calculate the reliability of a system with time-varying failure rates in an industry system. This is a study of a system consisting of three identical units in parallel, each of which can be in two states: operational or non-operational. Under the assumptions that each unit has a constant failure and repair time rate. The system is regarded as operational if at least one of its elements is working. The system analyzed incorporating three types of failures namely partial failure, human failure and catastrophic failure, which also leads to the system failure. With the help of probability analysis, supplementary variable technique, Laplace transformations, and the Markov process theory, the transition state probabilities, availability, reliability, mean time to failure, sensitivity analysis and cost effectiveness of the system have been evaluated. Finally, some particular cases, numerical examples and graphical illustrations have also been taken to describe the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Condra LW (2001) Reliability improvement with design of experiments. Marcel Dekker, New York

    Google Scholar 

  • Cusumano M, Selby R (1995) Microsoft secrets. Free Press, New York

    Google Scholar 

  • Dhillon BS, Yang N (1992) Stochastic analysis of standby systems with common cause failures and human errors. Microelectron Reliab 32(12):1699–1712

    Article  Google Scholar 

  • Dhillon BS, Yang N (1993) Availability of a man-machine system with critical and non-critical human error. Microelectron Reliab 33(10):1511–1521

    Article  Google Scholar 

  • Ghasemi A, Yacout S, Ouali M-S (2010) Evaluating the reliability function and the mean residual life for equipment with unobservable states. IEEE Trans Reliab 59(1):45–54

    Article  Google Scholar 

  • Gupta PP, Sharma MK (1993) Reliability and MTTF evaluation of a two duplex-unit standby system with two types of repair. Microelectron Reliab 33(3):291–295

    Article  Google Scholar 

  • Engel A, Bogomolni I, Shacher S, Grinman A (2004) Gathering historical lifecycle quality costs to support optimizing the VVT process. In: Proceedings of the 14th annual international symposium INCOSE [CD-ROM]

  • Khandelwal A (2011) Application of reliability analysis: a technical survey. Int J Sci Eng Res 2(4):1–8

    MathSciNet  Google Scholar 

  • Liang X, Xiong Y, Li Z (2010) Exact reliability formula for consecutive k-out-of n repairable systems. IEEE Trans Reliab 59(2):313–318

    Article  Google Scholar 

  • Meeker WQ, Escobar LA (2004) Reliability: the other dimension of quality. Qual Technol Quant Manag 1:1–25

    MathSciNet  Google Scholar 

  • Nourelfath M, Fitouhi M, Machani M (2010) An integrated model for production and preventive maintenance planning in multi-state systems. IEEE Trans Reliab 59(3):496–506

    Google Scholar 

  • Pan JN (1997) Reliability prediction of imperfect switching systems subject to multiple stresses. Microelectron Reliab 37(3):439–445

    Article  Google Scholar 

  • Park M, Pham H (2010) Warranty cost analyses using quasi-renewal processes for multicomponent systems. IEEE Trans Syst Man Cybern A 40(6):1329–1340

    Article  Google Scholar 

  • Philip KW, Deans ND (1997) Comparative redundancy, an alternative to triple modular redundant system design. Microelectron Reliab 37(4):581–585

    Article  Google Scholar 

  • Ram M (2013) On system reliability approaches: a brief survey. Int J Syst Assur Eng Manag 4(2):101–117

    Article  Google Scholar 

  • Ram M, Singh SB (2008) Availability and cost analysis of a parallel redundant complex system with two types of failure uner preemptive-resume repair discipline using Goumble-Hougaard family copula in repair. Int J Reliab Qual Saf Eng 15(4):341–365

    Article  Google Scholar 

  • Ram M, Singh SB (2010) Analysis of a complex system with common cause failure and two types of repair facilities with different distributions in failure. Int J Reliab Saf 4(4):381–392

    Article  Google Scholar 

  • Sawaragi T (1999) Modeling and analysis of human interactions with and within complex systems. IEEE Int Conf Syst Man Cybernet 1:701–707

    Google Scholar 

  • Shrestha A, Xing L, Dai Y (2011) Reliability analysis of multistate phased-mission systems with unordered and ordered states. IEEE Trans Syst Man Cybern A 41(4):625–636

    Article  Google Scholar 

  • Singh SB, Ram M, Chaube S (2011) Analysis of the reliability of a three-component. Int J Eng 24(4):395–401

    Article  Google Scholar 

  • Sutcliffe AG, Gregoriades A (2007) Automating scenario analysis of human and system reliability. IEEE Trans Syst Man Cybern A 37(2):249–261

    Article  Google Scholar 

  • Uemura T, Dohi T, Kaio N (2010) Availability analysis of an intrusion tolerant distributed server system with preventive maintenance. IEEE Trans Reliab 59(1):18–29

    Article  Google Scholar 

  • Vanderperre EJ (1990) Reliability analysis of a two- unit parallel system with dissimilar units and generation distributions. Microelectron Reliab 30(3):491–501

    Article  Google Scholar 

  • Verma AK, Ajit S, Karanki DR (2010) Reliability and safety engineering, 1st edn. Springer Publishers, London. ISBN 978-1-84996-231-5

    Book  Google Scholar 

  • Wikipedia (2008) [online]. Available: http://en.wikipedia.org/wiki/complex_system

  • Xiaowei Yin (2010) Common cause failure model of system reliability based on Bayesian networks. Int J Perform Eng 6(3):255–268

    Google Scholar 

  • Yeh W-C (2011) An improved method for multistate flow network reliability with unreliable nodes and a budget constraint based on path set. IEEE Trans Syst Man Cybern A 41(2):350–355

    Article  Google Scholar 

  • Zhang X, Pham H, Johnson CR (2010) Reliability models for systems with internal and external redundancy. Int J Syst Assur Eng Manag 1(4):362–369

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere thanks to the reviewers of the Journal whose critical comments have significantly improved the paper in the present form. Authors are also thankful to the Research and Development Department of the Graphic Era University, Dehradun, India for the facilities provided for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangey Ram.

Appendices

Appendix 1

By the probability of the considerations and continuity arguments, we can obtain the set of differential equations governing the present mathematical model. At any time t, the probability that the system is in state S i at time t and remains there in the interval (tt + Δt) or/and if it is in some other state at time t then it should be transit to the state S i in the interval (tt + Δt) provided transition exists between the states and Δt → 0. Accordingly, the Eqs. (28) to (35) are interpreted as given below:

The probability of the system to be in state S 0 in the interval (tt + Δt) is given by

$$ P_{0} (t + \varDelta t)\; = (1 - 3\lambda_{1} \varDelta t)(1 - \lambda_{h} \varDelta t)(1 - \lambda_{csf} \varDelta t)(1 - \alpha_{j} \varDelta t)P_{0} (t)\; + \int\limits_{0}^{\infty } {P_{13} } (x,t)\upsilon (x)\varDelta tdx $$
$$ + \int\limits_{0}^{\infty } {P_{5j} (y,t)\phi (y)} \varDelta tdy + \int\limits_{0}^{\infty } {P_{6h} (z,t)\mu (z)\varDelta tdz} $$
$$ \begin{aligned} & \Rightarrow \mathop {\lim }\limits_{\varDelta t \to 0} \frac{{P_{0} (t + \varDelta t) - P_{0} (t)}}{\varDelta t}\; + (3\lambda {}_{1} + \lambda_{h} + \lambda_{csf} + \alpha_{j} )P_{0} (t) \\ & = \int\limits_{0}^{\infty } {P_{13} (x,t)\upsilon (x)} dx + \int\limits_{0}^{\infty } {P_{5j} (y,t)\phi (y)} dy + \int\limits_{0}^{\infty } {P_{6h} (z,t)\mu (z)} dz \\ & \Rightarrow \left[ {\frac{\partial }{\partial t} + 3\lambda_{1} + \lambda_{h} + \lambda_{csf} + \alpha_{j} } \right]P_{0} (t) = \int\limits_{0}^{\infty } {P_{13} (x,t)\upsilon (x)} dx + \int\limits_{0}^{\infty } {P_{5j} (y,t)\phi (y)} dy + \int\limits_{0}^{\infty } {P_{6h} (z,t)\mu (z)} dz \\ \end{aligned} $$
(28)

For state S 1,

$$ \begin{aligned} P_{11} (t + \varDelta t) & \; = (1 - 2\lambda_{1} \varDelta t)(1 - \alpha_{j} \varDelta t)P_{11} (t)\; + 3\lambda_{1} \varDelta tP_{0} (t) \\ & \Rightarrow \mathop {\lim }\limits_{\varDelta t \to 0} \frac{{P_{11} (t + \varDelta t) - P_{11} (t)}}{\varDelta t} + (2\lambda_{1} + (1 - \alpha_{j} ))P_{11} (t)\; = 3\lambda_{1} P_{0} (t) \\ & \Rightarrow \left[ {\frac{\partial }{\partial t} + 2\lambda_{1} + \alpha_{j} } \right]P_{11} (t) = 3\lambda_{1} P_{0} (t) \\ \end{aligned} $$
(29)

For state S 2,

$$ \begin{aligned} P_{12} (t + \varDelta t)\; & = (1 -\lambda_{1} \varDelta t)(1 - \alpha_{j} \varDelta t)P_{12} (t)\; +2\lambda_{1} \varDelta tP_{11} (t) \\ & \Rightarrow \mathop{\lim }\limits_{\varDelta t \to 0} \frac{{P_{12} (t + \varDelta t)- P_{12} (t)}}{\varDelta t} + (\lambda_{1} + \alpha_{j} )P_{12}(t)\; = 2\lambda_{1} P_{11} (t) \\ & \Rightarrow \left[{\frac{\partial }{\partial t} + \lambda_{1} + \alpha_{j} }\right]P_{12} (t) = 2\lambda_{1} P_{11} (t) \\ \end{aligned} $$
(30)

For state S 3,

$$ \begin{aligned} P_{13} (x + \varDelta x,t + \varDelta t)\;& = \{ 1 - \upsilon (x)\varDelta t\} P_{13} (x,t)\; \\ &\Rightarrow \mathop {\lim }\limits_{\begin{subarray}{l} \varDelta x \to 0 \\ \varDelta t \to 0 \end{subarray} } \frac{{P_{13} (x +\varDelta x,t + \varDelta t) - P_{13} (x,t)}}{\varDelta t} +\upsilon (x)P_{13} (x,t) = 0 \\ & \Rightarrow \left[{\frac{\partial }{\partial t} + \frac{\partial }{\partial x} +\upsilon (x)} \right]P_{13} (x,t) = 0 \\ \end{aligned} $$
(31)

For state S 4,

$$ \begin{aligned} P_{4j} (t + \varDelta t)\; & = (1 -\omega_{j} \varDelta t)P_{4j} (t)\; + \alpha_{j} \varDelta t(P_{0}(t) + P_{11} (t) + P_{12} (t)) \\ & \Rightarrow \mathop {\lim}\limits_{\varDelta t \to 0} \frac{{P_{4j} (t + \varDelta t) -P_{4j} (t)}}{\varDelta t} + \omega_{j} P_{4j} (t)\; = \alpha_{j}(P_{0} (t) + P_{11} (t) + P_{12} (t)) \\ & \Rightarrow \left[{\frac{\partial }{\partial t} + \omega_{j} } \right]P_{4j} (t) =\alpha_{j} (P_{0} (t) + P_{11} (t) + P_{12} (t)) \\ \end{aligned}$$
(32)

For state S5

$$ \begin{aligned} P_{5j} (y + \varDelta y,t + \varDelta t)\; & = \phi (y)\varDelta tP_{5j} (y,t)\; \\ & \Rightarrow \mathop {\lim }\limits_{\begin{subarray}{l} \varDelta y \to 0 \\ \varDelta t \to 0 \end{subarray} } \frac{{P_{5j} (y + \varDelta y,t + \varDelta t) - P_{5j} (y,t)}}{\varDelta t} + \phi (y)P_{5j} (y,t) = 0 \\ & \Rightarrow \left[ {\frac{\partial }{\partial t} + \frac{\partial }{\partial y} + \phi (y)} \right]P_{5j} (y,t) = 0 \\ \end{aligned} $$
(33)

For state S6

$$ \begin{aligned} P_{6h} (z + \varDelta z,t + \varDelta t)\; & = \{ 1 - \mu (z)\varDelta t\} P_{6h} (z,t)\; \\ & \Rightarrow \mathop {\lim }\limits_{\begin{subarray}{l} \varDelta z \to 0 \\ \varDelta t \to 0 \end{subarray} } \frac{{P_{6h} (z + \varDelta z,t + \varDelta t) - P_{6h} (z,t)}}{\varDelta t} + \mu (z)P_{6h} (z,t) = 0 \\ & \Rightarrow \left[ {\frac{\partial }{\partial t} + \frac{\partial }{\partial z} + \mu (z)} \right]P_{6h} (z,t) = 0 \\ \end{aligned} $$
(34)

For state S7

$$ \begin{aligned} P_{7c} (t + \varDelta t)\; & = \lambda_{csf} \varDelta tP_{0} (t) \\ & \Rightarrow \mathop {\lim }\limits_{\varDelta t \to 0} \frac{{P_{7c} (t + \varDelta t) - P_{7c} (t)}}{\varDelta t}\; = \lambda_{csf} P_{0} (t) \\ & \Rightarrow \frac{\partial }{\partial t}P_{7c} (t) = \lambda_{csf} P_{0} (t) \\ \end{aligned} $$
(35)

Appendix 2

Boundary conditions of the system are obtained corresponding to transitions between the states where the transition from a state with and without elapsed repair time exists when elapsed repair times x, y and z are 0. Hence from Fig. 1, we have following boundary conditions:

$$ P_{ 1 3} \left( {0, t} \right) = \lambda_{ 1} P_{ 1 2} \left( t \right) $$
(36)
$$ P_{ 6h} \left( {0, t} \right) = \lambda_{h} P_{0} \left( t \right) $$
(37)
$$ P_{ 5j} \left( {0, t} \right) = \omega_{j} P_{ 4j} \left( t \right) $$
(38)

When system is perfectly good i.e. in initial state S 1, then

$$ P_{0} \left( 0 \right) = 1 {\text{ and other state probabilities are zero at}}\,t = \, 0 $$
(39)

Appendix 3

Taking the Laplace transform of Eqs. (2835) and (3638), we get

$$ \left[ {s + 3\lambda_{1} + \lambda_{h} + \alpha_{j} + \lambda_{csf} } \right]\bar{P}_{0} (s) = 1 + \int\limits_{0}^{\infty } {\upsilon (x)\bar{P}_{13} (x,s)} dx + \int\limits_{0}^{\infty } {\phi (y)\bar{P}_{5j} } (y,s)dy + \int\limits_{0}^{\infty } {\mu (z)\bar{P}_{6h} } (z,s)dz $$
(40)
$$ \left[ {s + 2\lambda_{1} + \alpha_{j} } \right]\bar{P}_{11} (s) = 3\lambda_{1} \bar{P}_{0} (s) $$
(41)
$$ \left[ {s + \lambda_{1} + \alpha_{j} } \right]\bar{P}_{12} (s) = 2\lambda_{1} \bar{P}_{11} (s) $$
(42)
$$ \left[ {s + \frac{\partial }{\partial x} + \upsilon (x)} \right]\bar{P}_{13} (x,s) = 0 $$
(43)
$$ \left[ {s + \omega_{j} } \right]\bar{P}_{4j} (s) = \alpha_{j} \left[ {\bar{P}_{0} (s) + \bar{P}_{11} (s) + \bar{P}_{12} (s)} \right] $$
(44)
$$ \left[ {s + \frac{\partial }{\partial y} + \phi (y)} \right]\bar{P}_{5j} (y,s) = 0 $$
(45)
$$ \left[ {s + \frac{\partial }{\partial z} + \mu (z)} \right]\bar{P}_{6h} (z,s) = 0 $$
(46)
$$ s\bar{P}_{7c} (s) = \lambda_{csf} \bar{P}_{0} (s) $$
(47)
$$ \bar{P}_{13} (0,s) = \lambda_{1} \bar{P}_{12} (s) $$
(48)
$$ \, \bar{P}_{6h} (0,s) = \lambda_{h} \bar{P}_{0} (s) $$
(49)
$$ \, \bar{P}_{5j} (0,s) = \omega_{j} \bar{P}_{4j} (s) $$
(50)

Solving (4047) with the help of (4850), and (39) one may get various transition state probabilities as given in Sect. 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ram, M., Manglik, M. Stochastic behaviour analysis of a Markov model under multi-state failures. Int J Syst Assur Eng Manag 5, 686–699 (2014). https://doi.org/10.1007/s13198-014-0234-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-014-0234-5

Keywords

Navigation