Skip to main content

Advertisement

Log in

A hybrid wind energy conversion system/active filter for non linear conditions

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

This paper presents the direct power control of a hybrid wind energy conversion system/active filter for non linear condition. The rotor side converter controls the active and reactive power injected to the grid by the stator of the doubly fed induction generator. The specify of the grid side converter (GSC) is to assure simultaneously the DC link voltage regulation, and harmonic currents mitigation which are delivered by non linear load. For this reason, a modified control strategy (DPC) of the GSC which combines the active filtering function with DC link voltage control is proposed. The simulation result shows a well performance of the modified control strategy for GSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( WECS \) :

Wind energy conversion system

\( is,ir \) :

Stator and rotor current vectors

\( \varPhi_{s} \varPhi_{r} \) :

Stator and rotor flux linkage vectors

\( \omega_{s} ,\omega_{r} \) :

Stator and rotor angular frequency

\( M \) :

Mutual inductance

\( Ps,Qs Pr,Qr \) :

Stator and rotor active and reactive powers

\( Rs, Rr \) :

Stator and rotor resistances

\( Ls,Lr \) :

Stator and rotor inductances

\( \theta s, \theta r \) :

Stator and rotor flux angles in the rotor frame

\( v_{sd} , v_{sq} , v_{rd} , v_{rq} \) :

Stator and rotor dq voltages components

\( i_{sd} ,i_{sq} ,i_{rd} ,i_{rq} \) :

Stator and rotor dq currents components

\( \varPhi_{sd} , \varPhi_{sq} , \varPhi_{rd} , \varPhi_{rq} \) :

Stator and rotor dq flux components

\( p \) :

Machine pole pairs

\( T_{r} \) :

Resistant torque

\( f \) :

Viscous coefficient

\( J \) :

Total inertia

\( V_{dc} \) :

DC bus voltage

\( Pg \) :

Grid activ power

\( Qg \) :

Grid reactive power

\( \varvec{i}_{\varvec{g}} \) :

Grid side converter current

\( P_{est} \) :

Estimated active power

\( Q_{est} \) :

Estimated reactive power

\( Hq, Hp \) :

Hysteresis bands

\( \lambda \) :

Voltage vector position

\( dp,dq \) :

Digitized variables

\( Sa,Sb,Sc \) :

Switching state

References

  • Aboul-Seoud T, Sharaf AM (2009) “A novel dynamic voltage regulator compensation scheme for a standalone village electricity wind energy conversion system”, IEE Electrical and Computer Engineering, pp. 117–121, 3–6 May 2009

  • Akagi H (2005) “The state-of-the-art of active filters for power conditioning” In Rec. European Conference one Power Electronics and Applications, Dresden, Sep 2005, pp. 1–15

  • Bardosa PG, Romlin LG, Hanitsch R (1998) Converter control strategy for grid-connected dc–ac converters with load power factor correction. Proc Inst Electric Eng 145:487–491

    Google Scholar 

  • Chaoui A, Krim F, Gaubert J, Rambault L (2008) DPC controlled three-phase active filter for power quality improvement. Electr Power Energy Syst 30:476–485

    Article  Google Scholar 

  • Cichowlas M, Kamierkowski MP (2002) “Comparison of current control techniques for PWM rectifiers.” In Proceedings IEEE ISIE’ 02, vol. 4, pp. 1259–1263, July 2002

  • Cichowlas M, Malinowski M, Sobczuk DL, Kazmierkowski MP, Rodriquez P, Pou J (2005) Active filtering function of tree-phase PWM boost rectifiers under different line voltage conditions. IEEE Transac Ind Electron 52(2):410–420

    Article  Google Scholar 

  • Fuse Y, Nakajima D, Nishikata S (2000) “A three-phase voltage-type pwm rectifier with the function of an active power filter”, IEE Power Electronics and Variable Speed Drives Conference, Vol. 47, pp. 386–391, 18–19 September 2000

  • Gaillard A, Poure P, Saadate S (2008) “Active filtering capability of WECS with DFIG for grid power quality improvement”, IEEE International Symposium on Industrial Electronics, ISIE 2008, pp. 365–2370

  • Ghennam T, Berkouk EM, François B (2007) “DC-link voltage balancing algorithm using a space–vector hysteresis current control for three-level VSI applied for wind conversion system”, 12th European conference on power electronics and applications (EPE 2007), Aalborg, Denmark, September 2–5, 2007

  • Ghennam T, Berkouk EM, François B (2009) “Modeling and control of a doubly fed induction generator (DFIG) based wind conversion system”, (POWERENG 2009), Lisbon, Portugal, March 18–20, 2009

  • Hyosung K, Blaabjerg F, Bak-Jensen B, Choi J (2002) Instantaneous power compensation in three-pha se systems by using p–q–r theory. IEEE Trans Power Electron 17(5):702–710

    Google Scholar 

  • Joos G, Ooi BT, McGillis D, Galiana FD and Marceau R, “The potential of distributed generation to provide ancillary services”, IEEE Power Engineering Society Summer Meeting, 2000, Vol. 3, Issue 3, 2000, pp. 1762–1767

  • Macken JP, Vanthournout K, Van den Keybus J, Deconinck G, Belmans RJM (2004) Distributed control of renewable generation units with integrated active filter. IEEE Trans Power Electron 19:1353–1360

    Article  Google Scholar 

  • Malinowski M, Kazmierkowski P (2002) “Direct power control of three-phase pwm rectifier using space vector modulation–simulation study,” in Proc IEEE ISIE’02, vol. 4, pp. 1114–1118, Jul 2002

  • Malinowski M, Kazmierkowski MP, Trzynadlowski A (2003) Review and comparative study of control techniques for three-phase PWM rectifiers. Math Comput Simul 63(3–5):349–361

    Article  MathSciNet  MATH  Google Scholar 

  • Noguchi T, Tomiki H, Kondo S, Takahashi I (1998) Direct power control of PWM converter without power-source voltage sensors. IEEE Trans Ind Appl 34(3):473–479

    Article  Google Scholar 

  • Zhou G, Wu B and Xu D (2007) Direct power control of a multilevel inverter based active power filter. Electr Power Syst Res 77(3–4):284–294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mesbahi.

Appendix

Appendix

Grid parameters:

Vs = 230 V,50 Hz,ωs = 314 rad/s.

DFIG parameters:

Pn = 7.5 kW, Nn = 1450tr/min, p = 2,

 

J = 0.3125 kg.m2, f = 0.00673Nm/s,

 

Rs = 0.455Ω, Rr = 0.62 Ω, Ls = 84mH,

 

Lr = 81H, M = 78mH, σ = 0.0106

Non linear load RL:

Rc = 90Ω, Lc = 0.5H

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesbahi, T., Ouari, A., Ghennam, T. et al. A hybrid wind energy conversion system/active filter for non linear conditions. Int J Syst Assur Eng Manag 7 (Suppl 1), 1–8 (2016). https://doi.org/10.1007/s13198-014-0250-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-014-0250-5

Keywords

Navigation