Skip to main content

Advertisement

Log in

Performance evaluation of modified perturb & observe maximum power point tracker for solar PV system

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Solar photovoltaic (PV) is used to convert the solar energy (a major source of renewable energy) into unregulated electrical energy. Maximum power point tracker (MPPT) is used to extract the maximum power from solar PV. Among various types of MPPT schemes, perturb & observe (P&O) scheme is one of the most popular method. The study aims at to develop a modified P&O MPPT scheme and to evaluate the performance parameters such as convergence time, steady state oscillations, and reliability under change in ambient conditions as well as load variations. In the modified MPPT design, the response time of the power electronics DC–DC converter is considered for deciding the interval between two perturbations. The simulation study is performed using PSIM software and the prototype hardware is developed in the laboratory. The modified MPPT scheme is implemented using buck DC–DC converter. The results show the convergence time of 0.16 s and steady state oscillation of 1 W with step load change response time of 1.8 s. The comparison of findings obtained in the modified P&O MPPT scheme and existing methods showed significant improvements. The modified P&O MPPT scheme may be useful for home applications, in DC microgrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • AEO (2013) Annual Energy Report. Department of Energy, USA. http://www.eia.gov. Accessed April 2013

  • Bianconi E, Calvante J, Giral R, Mamarelis E, Petrone G, Ramos-Paja CA (2013) Perturb and observe MPPT algorithm with a current controller based on the sliding mode. Int J Electr Power Energy Syst 44(1):346–356

    Article  Google Scholar 

  • De Brito MAG, Galotto L, Sampaio PL, de Azevedo e Melo G, Canesin CA (2013) Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans Ind Electron 60(3):1156–1167

    Article  Google Scholar 

  • Deasi HP, Maheshwari R, Sharma SN, Shah V (2012) Maximum power extraction from photo-voltaic power generator with adaptive MPP tracker. J Appl Sol Energy 46(4):251–257

    Article  Google Scholar 

  • Enslin JHR, Wolf MS, Snyman DB, Swiegers W (1997) Integrated photovoltaic maximum power point tracking converter. IEEE Trans Ind Electron 44:769–773

    Article  Google Scholar 

  • Erickson RW, Maksimovic D (2001) Fundamentals of power electronics. Kluwer Academic Publishers, Secaucus

    Book  Google Scholar 

  • Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 22(2):439

    Article  Google Scholar 

  • Faranda R, Leva S, Maiyeri V (2008) MPPT techniques for PV system: energetic and cost comparison. Proc. PESGM 09:1–6

    Google Scholar 

  • Moradi MH, Reisi AR (2011) A hybrid maximum power point tracking method for photovoltaic systems. J Sol Energy 85:2965–2976

    Article  Google Scholar 

  • Noguchi T, Togashi S, Makamoto R (2002) Short current pulse based maximum power point tracking method for multiple photovoltaic and converter module system. IEEE Trans Ind Electron 49:217–223

    Article  Google Scholar 

  • Safari A, Mekhilef S (2011) Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter. IEEE Trans Ind Electron 58(4):1154–1161

    Article  Google Scholar 

  • Salas V, Olias E, Lazaro A, Barrado A (2005) New algorithm using only one variable measurement applied to a maximum power point tracker. J Sol Energy Mater Solar Cells 87:675–684

    Article  Google Scholar 

  • Sayed K, Abdel-Salam M, Ahmed A, Ahmed M (2012) New high voltage gain dual-boost DC–DC converter for photovoltaic power systems. J Electr Power Compon Syst 40(7):711–728

    Article  Google Scholar 

  • Soon Tey Kok, Mekhilef Saad, Safari Azadeh (2013) Simple and low cost incremental conductance maximum power point tracking using buck–boost converter. J Renew Sustain Energy 5:023106

    Article  Google Scholar 

  • Tseng KC, Huang CC, Shih WY (2013) A high step up converter with a voltage multiplier module for a photovoltaic system. IEEE Trans Power Electron 28(6):3047–3057

    Article  Google Scholar 

  • Villalva MG, Gazoli JR, Filho ER (2009) Comprehensive approach to modelling and simulation of photovoltaic arrays. IEEE Trans Power Electron 5:1198–1208

    Article  Google Scholar 

  • Xiao W, Dunford WG (2004) A modified adaptive hill climbing MPPT method for photovoltaic power systems. In: Proceedings of 35th annual IEEE power electronics specific conference, pp 1957–1963

  • Yu WL, Lee TP, Wu GH, Chen QS, Chiu HJ, Lo YK, Shih F (2010) A DSP based single stage maximum power point tracking PV inverter. Proc APEC 25:948–952

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahteshamul Haque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaheeruddin, Mishra, S. & Haque, A. Performance evaluation of modified perturb & observe maximum power point tracker for solar PV system. Int J Syst Assur Eng Manag 7 (Suppl 1), 229–238 (2016). https://doi.org/10.1007/s13198-015-0369-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-015-0369-z

Keywords

Navigation