Skip to main content
Log in

Maintenance cost minimization of manufacturing systems using PSO under reliability constraint

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Profit is a main objective of production units, and minimization of its maintenance cost will help to achieve it. But with no compromise with plant machinery reliability constraints. Manufacturing systems do require maintenance, but deferring it due to production constraints may increase its requirements, resulting in the increased cost. The experience shows that carrying out of the preventive maintenance (PM) helps in avoidance of catastrophic failures, but this needs to be optimized. An optimal PM interval will minimize maintenance cost, while maintaining their lower bound reliability. Most existing optimization models do not address this issue especially in the context of real life industries. Particle swarm optimization is an effective meta-heuristic technique and is extensively applied to find optimal solution for various engineering problems. In this paper, this is proposed for maintenance cost minimization of manufacturing systems under reliability constraint. An example is illustrated to demonstrate it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\({\text{a}}_{\text{m}}^{\text{i}}\) :

mth assembly of ith subsystem

C1, C2 :

Learning factors, i.e., cognitive and social constants of PSO

\({\text{C}}_{{{\text{AM}}_{{{\text{k}}^{\text{mi}} }} }}\) :

Average cost of major PM of kth component of mth assembly in ith subsystem

\({\text{C}}_{{{\text{AM}}_{{{\text{m}}^{\text{i}} }} }}\) :

Average cost of major PM of mth assembly in ith subsystem

\({\text{C}}_{{{\text{FM}}_{{^{\text{i}} }} }}\) :

Fixed cost of minimal PM for all assemblies of hydraulic subsystem of NC crankshaft balancing machine

\({\text{C}}_{{{\text{FM}}_{{{\text{m}}^{\text{i}} }} }}\) :

Fixed cost of minimal PM for all components of mth assembly in ith subsystem

\({\text{C}}_{{{\text{FRPL}}_{{{\text{k}}^{\text{mi}} }} }}\) :

Cost of failure–repair and production loss of kth component of mth assembly in ith subsystem

\({\text{C}}_{{{\text{FRPL}}_{{{\text{m}}^{\text{i}} }} }}\) :

Cost of failure–repair and production loss of mth assembly in ith subsystem

\({\text{C}}_{{{\text{RP}}_{{{\text{k}}^{\text{mi}} }} }}\) :

Cost of reduced production due to poor/irregular maintenance of kth component of mth assembly in ith subsystem

\({\text{C}}_{{{\text{RP}}_{{{\text{m}}^{\text{i}} }} }}\) :

Cost of reduced production due to poor/irregular maintenance of mth assembly in ith subsystem

\({\text{C}}_{{{\text{QD}}_{{{\text{k}}^{\text{mi}} }} }}\) :

Cost of product quality-deterioration due to poor/irregular maintenance of kth component of mth assembly in ith subsystem

\({\text{C}}_{{{\text{QD}}_{{{\text{m}}^{\text{i}} }} }}\) :

Cost of product quality-deterioration due to poor/irregular maintenance of mth assembly in ith subsystem

CMCC :

Total maintenance cost of the components of a manufacturing system

CMCHS :

Total maintenance cost of the assemblies of crankshaft balancing machine

\({\text{c}}_{\text{k}}^{\text{im}}\) :

kth component of mth assembly in ith subsystem

\({\text{F}}_{{{\text{k}}^{\text{mi}} }} \, ( {\text{T}}_{\text{PMC}} )\) :

Maximum allowable failure probability of kth component of mth assembly in ith subsystem

\({\text{F}}_{{{\text{m}}^{\text{i}} }} \,\left( {{\text{T}}_{\text{PMAHS}} } \right)\) :

Maximum allowable failure probability of mth assembly in ith subsystem

\({\text{g}}_{\text{best}}^{ ( {\hat{\text{n}})}}\) :

Global best position in iteration ‘\({\hat{n}}\)’ of PSO

\({\text{g}}_{\text{best}}^{{ ( {\hat{n}} - 1 )}}\) :

Global best position of the ĩth particle in iteration, ‘\({\hat{\text{n}}} - 1\)

itermax :

Maximum number of iteration

n:

Number of PM actions

\(( {\hat{\text{n}}} - 1 )\), \(\hat{\text{n}}\), \((\hat{\text{n}} + 1)\) :

Previous, current, following iterations in PSO

\(\dot{\text{p}}_{{\tilde{\text{i}}}}\) :

Position of ĩth particle

\(\dot{\text{p}}_{{\tilde{\text{i}}}}^{{ ( {\hat{\text{n}}} + 1 )}}\) :

Updated position vector of the ĩth particle in iteration ‘\({\hat{n}} + 1\)

\(\dot{\text{p}}_{{\tilde{\text{i}}}}^{{ ( {\hat{\text{n}}} - 1 )}}\) :

Position of particle ‘ĩ’ at the end of \(({\hat{n}} - 1){\text{th}}\) iteration

\(\dot{\text{p}}_{{{\text{best}}\tilde{\text{i}}}}^{{ ( {\hat{\text{n}}} - 1 )}}\) :

Best position of ĩth particle in iteration, ‘\(( {\hat{n}} - 1 )\)

\(\dot{\text{p}}_{{{\text{best}}\tilde{\text{i}}}}^{{ ( {{\hat{\text{n}})}}}}\) :

Best position of ĩth particle in iteration, ‘\({\hat{n}}\)

\(\dot{\text{p}}_{{\tilde{\text{i}}}}^{{ ( {{\hat{\text{n}})}}}}\) :

Position of ĩth particle in iteration ‘\({\hat{\text{n}}}\)

\({\text{R}}_{{{\text{k}}^{\text{mi}} }} \,\left( {{\text{T}}_{\text{PMC}} } \right)\) :

Lower bound reliability of kth component of mth assembly in ith subsystem

\({\text{R}}_{{{\text{m}}^{\text{i}} }} \, ( {\text{T}}_{\text{PMAHS}} )\) :

Lower bound reliability of mth assembly in ith subsystem

rand1, rand2:

Random functions in updating particle velocity

S:

Manufacturing system

Si :

ith subsystem of manufacturing system, S

TPMC :

PM Interval for components of a manufacturing system

TPMAHS :

PM interval of assemblies of hydraulic subsystem of crankshaft balancing machine

\({\text{v}}_{{{\tilde{\text{i}}}}}\) :

Velocity of ĩth particle

\(\bar{\text{v}}_{{\tilde{\text{i}}}}^{{ ( {{\hat{\text{n}})}}}}\) :

Velocity of ĩth particle in iteration ‘\({\hat{n}}\)

\(\bar{\text{v}}_{{\tilde{\text{i}}}}^{{ ( {\hat{\text{n}}} + 1 )}}\) :

Updated velocity of the ĩth particle in iteration, ‘\({\hat{n}} + 1\)

W:

Inertial weight

Wmax, Wmin :

Initial and final inertial weight

\(\upbeta_{{{\text{k}}^{\text{mi}} }}\) :

Shape factor of Weibull distribution for kth component of mth assembly in ith subsystem

\(\upbeta_{{{\text{m}}^{\text{i}} }}\) :

Shape factor of Weibull distribution for mth assembly in ith subsystem

\(\uptheta_{{{\text{k}}^{\text{mi}} }}\) :

Scale factor of Weibull distribution for kth component of mth assembly in ith subsystem

\(\uptheta_{{{\text{m}}^{\text{i}} }}\) :

Scale factor of Weibull distribution for mth assembly in ith subsystem

References

  • Abdul-Nour G, Beaudoin H, Ouellet P, Rochette R, Lambert S (1998) A reliability based maintenance policy: a case study. Comput Ind Eng 35(3–4):591–594

    Article  Google Scholar 

  • Ambani S, Meerkov SM, Zhang L (2010) Feasibility and optimization of preventive maintenance in exponential machines and serial lines. IIE Trans 42(10):766–777

    Article  Google Scholar 

  • Azadeh A, Sheikhalishahi M, Khalili SM, Firoozi M (2014) An integrated fuzzy simulation-fuzzy data envelopment analysis approach for optimum maintenance planning. Int J Comput Integr Manuf 27(2):181–199

    Article  Google Scholar 

  • Bansal JC, Singh PK, Saraswat M, Verma A, Jadon SS, Abraham A (2011) Inertia weight strategies in particle swarm optimization. In: Proceedings of 3rd world congress on nature and biologically inspired computing, Salamanca, Spain, 19–21 Oct, pp 640–647

  • Barabady J, Kumar U (2007) Reliability characteristic based maintenance scheduling: a case study of a crushing plant. Int J Perform Eng 3(3):319–328

    Google Scholar 

  • Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308

    Article  Google Scholar 

  • Boulet JF, Gharbi A, Kenne JP (2009) Multiobjective optimization in an unreliable failure-prone manufacturing system. J Qual Maint Eng 15(4):397–411

    Article  Google Scholar 

  • Brall A (2010) Reliability analysis—a tool set for improving business processes. In: Proceedings of annual reliability and maintainability symposium, IEEE, San Jose, CA, USA, 25–28 Jan 2010, pp 1–5

  • Chen CT (2011) Dynamic preventive maintenance strategy for an aging and deteriorating production system. Expert Syst Appl 38(5):6287–6293

    Article  Google Scholar 

  • Chou JS, Le TS (2011) Reliability-based performance simulation for optimized pavement maintenance. Reliab Eng Syst Saf 96(10):1402–1410

    Article  Google Scholar 

  • Das K, Lashkari RS, Sengupta S (2007) Machine reliability and preventive maintenance planning for cellular manufacturing systems. Eur J Oper Res 183(1):162–180

    Article  MATH  Google Scholar 

  • Dehayem Nodem FI, Gharbi A, Kenne JP (2010) Preventive maintenance and replacement policies for deteriorating production systems subject to imperfect repairs. Int J Prod Res 49(12):3543–3563

    Article  Google Scholar 

  • Dekker R (1996) Applications of maintenance optimization models: a review and analysis. Reliab Eng Syst Safe 51(3):229–240

    Article  Google Scholar 

  • Ding SH, Kamaruddin S (2015) Maintenance policy optimization—literature review and directions. Int J Adv Manuf Technol 76(5–8):1263–1283

    Article  Google Scholar 

  • Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among five evolutionary-based optimization algorithms. Adv Eng Inf 19(1):43–53

  • Gacem A, Benattous D (2014) Hybrid genetic algorithm and particle swarm for optimal power flow with non-smooth fuel cost functions. Int J Syst Assur Eng Manag. doi:10.1007/s13198-014-0312-8

    Google Scholar 

  • Garg A, Deshmukh SG (2006) Maintenance management: literature review and directions. J Qual Maint Eng 12(3):205–238

    Article  Google Scholar 

  • Gharbi A, Kenne JP (2005) Maintenance scheduling and production control of multiple-machine manufacturing systems. Comput Ind Eng 48(4):693–707

    Article  Google Scholar 

  • Gharbi A, Boulet JF, Kenne JP (2009) Multiobjective optimization in an unreliable failure-prone manufacturing system. J Qual Maint Eng 15(4):397–411

    Article  Google Scholar 

  • Heo JH, Kim MK, Lyu JK (2014) Implementation of reliability-centered maintenance for transmission components using particle swarm optimization. Int J Electr Power Energy Syst 55:238–245

    Article  Google Scholar 

  • Jardine AKS (1973) An introduction to reliability and maintainability engineering. McGraw-Hill, New York

    Google Scholar 

  • Jardine AKS, Buzacott JA (1984) Equipment reliability and maintenance. Eur J Oper Res 19(198):285–296

    MathSciNet  Google Scholar 

  • Kardon B, Fredendall LD (2002) Incorporating overall probability of system failure into a preventive maintenance model for a serial system. J Qual Maint Eng 8(4):331–345

    Article  Google Scholar 

  • Keller AZ, Kamath ARR, Perera UD (1982) Reliability analysis of CNC machine tools. Reliab Eng 3(6):449–473

    Article  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, NJ, 1942–1948

  • Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of IEEE international conference on systems, man and cybernetics, Orlando, FL, pp 4104–4108

  • Kumarappan N, Suresh K (2008) Particle swarm optimization based approach to maintenance scheduling using levelized risk method. In: Proceedings of joint international conference on power system technology and IEEE power India conference, New Delhi, pp 1–6

  • Labib AW (2004) A decision analysis model for maintenance policy selection using a CMMS. J Qual Maint Eng 10(3):191–202

    Article  Google Scholar 

  • Leng K, Ren P, Gao L (2006) A novel approach to integrated preventive maintenance planning and production scheduling for a single machine using the chaotic particle swarm optimization algorithm. In: Proceedings of the 6th world congress on intelligent control, IEEE, Dalian, China, pp 7816–7820

  • Li L, Ni J (2008) Reliability estimation based on operational data of manufacturing systems. Qual Reliab Eng Int 24(7):843–854

    Article  Google Scholar 

  • Lin ZL, Huang YS, Fang CC (2015) Non-periodic preventive maintenance with reliability thresholds for complex repairable systems. Reliab Eng Syst Saf 136:145–156

    Article  Google Scholar 

  • Loganathan MK, Gandhi OP (2015) Reliability evaluation and analysis of CNC cam shaft grinding machine. J Eng Des Technol 13(1):37–73

    Google Scholar 

  • Malhotra R, Negi A (2013) Reliability modelling using particle swarm optimization. Int J Syst Assur Eng Manag 4(3):275–283

    Article  Google Scholar 

  • MATLAB (2014) MATLAB, R2014b. Mathworks, Natick

    Google Scholar 

  • Miriyala K, Viswanadham N (1989) Reliability analysis of flexible manufacturing systems. Int J Flex Manuf Syst 2(2):145–162

    Article  Google Scholar 

  • Nguyen DQ, Bagajewicz M (2008) Optimization of preventive maintenance scheduling in processing plants. In: Proceedings of 18th European symposium on computer aided process engineering, 1–4 June 2008, Lyon, France, pp 319–324

  • Odeyale SO, Alamu OJ, Odeyale EO (2013) The analytic hierarchy process concept for maintenance strategy selection in manufacturing industries. Pac J Sci Technol 14(1):223–233

    Google Scholar 

  • Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63(5):513–623

    Article  MathSciNet  MATH  Google Scholar 

  • Panchangam SP, Naikan VNA (2013) Reliability analysis of temperature sensor system. Int J Reliab Qual Saf Eng. doi:10.1142/S0218539313500034

    Google Scholar 

  • Pedersen MEH (2010) Good parameters for particle swarm optimization. Technical Report No. HL1001. Hvass Laboratories, Copenhagen

  • Pereira CMNA, Lapa CMF, Mol ACA, da Luz AF (2010) A particle swarm optimization (PSO) approach for non-periodic preventive maintenance scheduling programming. Prog Nucl Energy 52(8):710–714

    Article  Google Scholar 

  • Poli R (2008) Analysis of the publications on the applications of particle swarm optimization. J Artif Evol Appl. doi:10.1155/2008/685175

    MATH  Google Scholar 

  • Ribeiro MA, Silveira JL, Qassim RY (2007) Joint optimization of maintenance and buffer size in a manufacturing system. Eur J Oper Res 176(1):405–413

    Article  MATH  Google Scholar 

  • Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Glob Optim 56(3):1247–1293

    Article  MathSciNet  MATH  Google Scholar 

  • Safaei N, Banjevic D, Jardine AKS (2010) Impact of the use-based maintenance policy on the performance of cellular manufacturing systems. Int J Prod Res 48(8):2233–2260

    Article  MATH  Google Scholar 

  • Savsar M (2000) Reliability analysis of a flexible manufacturing cell. Reliab Eng Syst Saf 67(2):147–152

    Article  Google Scholar 

  • Savsar M (2006) Effects of maintenance policies on the productivity of flexible manufacturing cells. Int J Manag Sci 34(3):274–282

    Google Scholar 

  • Sedighizadeh D, Masehian E (2009) Particle swarm optimization methods, taxonomy and applications. Int J Comput Theory Eng 1(5):1793–8201

    Google Scholar 

  • Sharma A, Yadava GS, Deshmukh SG (2011) A literature review and future perspectives on maintenance optimization. J Qual Maint Eng 17(1):5–25

    Article  Google Scholar 

  • Sinha RS, Mukhopadhyay AK (2015) Reliability centered maintenance of cone crusher: a case study. Int J Syst Assur Eng Manag 6(1):32–35

    Article  Google Scholar 

  • Sun JW, Xi LF, Du SC, Ju B (2008) Reliability modelling and analysis of serial-parallel hybrid multi-operational manufacturing system considering dimensional quality, tool degradation and system configuration. Int J Prod Econ 114(1):149–163

    Article  Google Scholar 

  • Talukder MS, Knapp GM (2002) Equipment assignment to multiple overhaul blocks in series system. J Qual Maint Eng 8(4):319–330

    Article  Google Scholar 

  • Vatn J, Hokstad P, Bodsberg L (1996) An overall model for maintenance optimization. Reliab Eng Syst Saf 51(3):241–257

    Article  Google Scholar 

  • Vineyard M, Amoako-Gyampah K, Meredith JR (2000) An evaluation of maintenance policies for flexible manufacturing systems. Int J Oper Prod Manag 20(4):409–426

    Article  Google Scholar 

  • Wang CH, Lin TW (2011) Improved particle swarm optimization to minimise periodic preventive maintenance cost for series-parallel systems. Expert Syst Appl 38(7):8963–8969

    Article  Google Scholar 

  • Yare Y, Venayagamoorthy GK (2010) Optimal maintenance scheduling of generators using multiple swarms-MDPSO framework. Eng Appl Artif Intell 23(6):895–910

    Article  Google Scholar 

  • Zhou Y, Lin TR, Sun Y, Bian Y, Ma L (2015) An effective approach to reducing strategy space for maintenance optimisation of multistate series-parallel systems. Reliab Eng Syst Saf 138:40–53

    Article  Google Scholar 

  • Zied H, Sofiene D, Nidhal R (2011) Optimal integrated maintenance/production policy for randomly failing systems with variable failure rate. Int J Prod Res 49(19):5695–5712

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge various people, especially Binu NG of General Motors Group, John P of Cummins Group and Kundaram N of Mahindra Group companies for their contribution to the analysis reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Loganathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, M.K., Gandhi, O.P. Maintenance cost minimization of manufacturing systems using PSO under reliability constraint. Int J Syst Assur Eng Manag 7, 47–61 (2016). https://doi.org/10.1007/s13198-015-0374-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-015-0374-2

Keywords

Navigation