Skip to main content
Log in

Classical and Bayesian estimation in log-logistic distribution under random censoring

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

This article deals with the classical and Bayesian estimation of the parameters of log-logistic distribution using random censorship model. The maximum likelihood estimators and the asymptotic confidence intervals based on observed Fisher information matrix of the parameters are derived. Bayes estimators of the parameters under generalized entropy loss function using independent gamma priors are obtained. For Bayesian computation, Tierney–Kadane’s approximation and Markov chain Monte Carlo (MCMC) methods are used. Also, the highest posterior credible intervals of the parameters based on MCMC method are constructed. A Monte Carlo simulation study is carried out to compare the behavior of various estimators developed in this article. Finally, a real data analysis is performed for illustration purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas K, Tang Y (2016) Objective Bayesian analysis for log-logistic distribution. Commun Stat Simul Comput 45(8):2782–2791

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike H (1974) A new look at the statistical models identification. IEEE Trans Autom Control 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Shomrani AA, Shawky AI, Arif OH, Aslam M (2016) Log-logistic distribution for survival data analysis using MCMC. SpringerPlus 5(1774):1–16

    Google Scholar 

  • Ameraouia A, Boukhetala K, Dupuy J-F (2016) Bayesian estimation of the tail index of a heavy tailed distribution under random censoring. Comput Stat Data Anal 104:148–168

    Article  MathSciNet  Google Scholar 

  • Arnold BC, Press SJ (1983) Bayesian inference for Pareto populations. J Econom 21:287–306

    Article  MathSciNet  MATH  Google Scholar 

  • Breslow N, Crowley J (1974) A large sample study of the life table and product limit estimates under random censorship. Ann Stat 2(3):437–453

    Article  MathSciNet  MATH  Google Scholar 

  • Calibra R, Pulcini G (1996) Point estimation under asymmetric loss functions for life truncated exponential samples. Commun Stat Theory Methods 25(3):585–600

    Article  MATH  Google Scholar 

  • Chen Z (2006) Estimating the shape parameter of the log-logistic distribution. Int J Reliab Qual Saf Eng 13(3):257–266

    Article  Google Scholar 

  • Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian credible and HPD intervals. J Comput Graph Stat 8(1):69–92

    MathSciNet  Google Scholar 

  • Danish MY, Aslam M (2013) Bayesian estimation for randomly censored generalized exponential distribution under asymmetric loss functions. J Appl Stat 40(5):1106–1119

    Article  MathSciNet  Google Scholar 

  • Danish MY, Aslam M (2014) Bayesian inference for the randomly censored Weibull distribution. J Stat Comput Simul 84(1):215–230

    Article  MathSciNet  Google Scholar 

  • Dube M, Garg R, Krishna H (2016) On progressively first failure censored Lindley distribution. Comput Stat 31(1):139–163

    Article  MathSciNet  MATH  Google Scholar 

  • Garg R, Dube M, Kumar K, Krishna H (2016) On randomly censored generalized inverted exponential distribution. Am J Math Manag Sci 35(4):361–379

    Google Scholar 

  • Ghitany ME (2001) A compound Rayleigh survival model and its applications to randomly censored data. Stat Pap 42:437–450

    Article  MathSciNet  MATH  Google Scholar 

  • Gilbert JP (1962) Random censorship. Ph.D. thesis, University of Chicago

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  MathSciNet  MATH  Google Scholar 

  • Kantam RRL, Rosaiah K, Srinivasa Rao G (2001) Acceptance sampling based on life test: log-logistic model. J Appl Stat 28(1):121–128

    Article  MathSciNet  MATH  Google Scholar 

  • Kantam RRL, Srinivasa Rao G, Sriram B (2006) An economic reliability test plan: log-logistic distribution. J Appl Stat 33(3):291–296

    Article  MathSciNet  MATH  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  MathSciNet  MATH  Google Scholar 

  • Koziol JA, Green SB (1976) A Cramer-von Mises statistic for randomly censored data. Biometrika 63(3):465–474

    MathSciNet  MATH  Google Scholar 

  • Krishna H, Goel N (2017) Classical and Bayesian inference in two parameter exponential distribution with randomly censored data. Comput Stat. https://doi.org/10.1007/s00180-017-0725-3

    MATH  Google Scholar 

  • Krishna H, Vivekanand, Kumar K (2015) Estimation in Maxwell distribution with randomly censored data. J Stat Comput Simul 85(17):3560–3578

    Article  MathSciNet  Google Scholar 

  • Kumar K, Krishna H, Garg R (2015) Estimation of P(Y < X) in Lindley distribution using progressively first failure censoring. Int J Syst Assur Eng Manag 6(3):330–341

    Article  Google Scholar 

  • Kumar K, Garg R, Krishna H (2017) Nakagami distribution as a reliability model under progressive censoring. Int J Syst Assur Eng Manag 8(1):109–122

    Article  Google Scholar 

  • Kuş CS, Kaya MF (2006) Estimation of parameters of the Log-logistic distribution based on progressive censoring using the EM algorithm. Hacet J Math Stat 35(2):203–211

    MathSciNet  MATH  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, NewYork

    MATH  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Mudholkar GS, Srivastava DK, Kollia GD (1996) A generalization of the Weibull distribution with application to the analysis of survival data. J Am Stat Assoc 91:1575–1583

    Article  MathSciNet  MATH  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo Statistical methods, 2nd edn. Springer, NewYork

    Book  MATH  Google Scholar 

  • Roberts GO, Smith AFM (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc B 55(1):3–23

    MathSciNet  MATH  Google Scholar 

  • Saleem M, Aslam M (2009) On Bayesian analysis of the Rayleigh survival time assuming the random censor time. Pak J Sci 25(2):71–82

    MathSciNet  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):421–464

    Article  MathSciNet  Google Scholar 

  • Shah BK, Dave PH (1963) A note on log-logistic distribution. J Math Sci Univ Baroda (Science Number) 12:21–22

    MathSciNet  Google Scholar 

  • Tierney T, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81:82–86

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author expresses his sincere thanks to anonymous reviewers for their constructive comments and useful suggestions which led to improvement in the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K. Classical and Bayesian estimation in log-logistic distribution under random censoring. Int J Syst Assur Eng Manag 9, 440–451 (2018). https://doi.org/10.1007/s13198-017-0688-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-017-0688-3

Keywords