Skip to main content
Log in

Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

This paper proposes a Poisson-inverse exponential distribution (PIED) as a lifetime model with initially increasing then decreasing failure model. Its statistical characteristics and important distributional properties are discussed along with its reliability and failure rate function. The maximum likelihood estimators (MLEs) and Bayes estimators of parameters of PIED under symmetric and asymmetric loss functions for progressive type-II censored data with binomial removals have been obtained. The MLEs and corresponding Bayes estimators are compared in terms of their simulated risks. The proposed methodology is illustrated through a real data set of bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balakrishnan N (2007) Progressive methodology: an appraisal (with discussion). Test 16(2):211–259

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Cramer E, Kamps U (2001) Bounds for means and variances of progressive type-II censored order statistics. Stat Probab Lett 54:301–315

    Article  MathSciNet  Google Scholar 

  • Balakrishnan N, Sandhu RA (1995) A simple simulational algorithm for generating progressive type-II censored samples. Am Stat 49(2):229–230

    Google Scholar 

  • Barreto-Souza W, Cribari-Neto F (2009) A generalization of the exponential-Poisson distribution. Stat Probab Lett 79(24):2493–2500

    Article  MathSciNet  Google Scholar 

  • Calabria R, Pulcini G (1996) Point estimation under-asymmetric loss functions for life -truncated exponential samples. Commun Stat Theory Methods 25(3):585–600

    Article  Google Scholar 

  • Cancho GV, Louzada-Neto F, Gladys D C Barriga (2011) The Poisson-exponential lifetime distribution. Comput Stat Data Anal 55(1):677–686

    Article  MathSciNet  Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the metropolis-hastings algorithm. J Am Stat Assoc 49(2):327–335

    Google Scholar 

  • Childs A, Balakrishnan N (2000) Conditional inference procedures for the Laplace distribution when the observed samples are progressively censored. Metrika 52(3):253–265

    Article  MathSciNet  Google Scholar 

  • Cohen AC (1963) Progressively censored samples in life testing. Technometrics 5(3):327–339

    Article  MathSciNet  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Dey DK, Ghosh M, Srinivasan C (1987) Simultaneous estimation of parameters under entropy loss. J Stat Plan Inference 15(3):347–363

    MathSciNet  MATH  Google Scholar 

  • Gelfand A E, Hills S E, Poon A Racine, Smith A F M (1990) Illustration of Bayesian inference in normal data models using Gibbs sampling. J Am Stat Assoc 85(412):972–985

    Article  Google Scholar 

  • Hogg RV, Mckean JW, Craig AT (2009) Introduction to mathematical statistics, 6th edn. Macmillan Publishing, New York

    Google Scholar 

  • Kalbfleisch JD, Lawless JF (1989) Inference based on retrospective ascertainment: an analysis of the data on transfusion related AIDS. J Am Stat Assoc 84(406):360–372

    Article  MathSciNet  Google Scholar 

  • Kamps U, Cramer E (2001) On distributions of generalized order statistics. Statistics 35(3):269–280

    Article  MathSciNet  Google Scholar 

  • Krishnan T, McLachlan G (1997) The EM algorithm and extensions. Wiley, New York

    MATH  Google Scholar 

  • Kus C (2007) A new lifetime distributions. Comput Stat Data Anal 51(9):4497–4509

    Article  MathSciNet  Google Scholar 

  • Lawless JF (1982) Statistical models and methods for lifetime data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New York

    Book  Google Scholar 

  • Lin CT, Duran BS, Lewis TO (1989) Inverted gamma as life distribution. Microelectron Reliab 29(4):619–629

    Article  Google Scholar 

  • Louzada F, Cancho V G, Barriga Gladys D C (2012) The Poisson-exponential regression model under different latent activation schemes. Comput Appl Math 31(3):617–632

    Article  MathSciNet  Google Scholar 

  • Louzada-Neto F, Cancho VG, Barriga GD (2011) The poisson-exponential distribution: a Bayesian approach. J Appl Stat 38(6):1239–1248

    Article  MathSciNet  Google Scholar 

  • Nassar MM, Eissa FH (2004) Bayesian estimation for the exponentiated Weibull model. Commun Stat Theory Methods 33(10):2343–2362

    Article  MathSciNet  Google Scholar 

  • Ng HKT, Chan PS, Balakrishnan N (2002) Estimation of parameters from progressively censored data using an algorithm. Comput Stat Data Anal 39(4):371–386

    Article  MathSciNet  Google Scholar 

  • Schabe H (1991) Bayes estimates under asymmetric loss. IEEE Trans Reliab 40(1):63–67

    Article  MathSciNet  Google Scholar 

  • Singh SK, Singh U, Kumar M (2013a) Estimation of parameters of exponentiated Pareto distribution for progressive type-ii censored data with binomial random removals scheme. Electron J Appl Stat 06(2):130–148

    MathSciNet  Google Scholar 

  • Singh SK, Singh U, Kumar M (2013b) Estimation of parameters of generalized inverted exponential distribution for progressive type-II censored sample with binomial removals. J Probab Stat 2013:1–12

    MathSciNet  MATH  Google Scholar 

  • Singh SK, Singh U, Kumar M (2014a) Bayesian estimation for Poission-exponential model under progressive type-II censoring data with binomial removal and its application to ovarian cancer data. Commun Stat Simul Comput 45(9):3457–3475

    Article  Google Scholar 

  • Singh SK, Singh U, Kumar M (2014b) Bayesian inference for exponentiated Pareto model with application to bladder cancer remission time. Stat Transit 15(3):403–426

    Google Scholar 

  • Singh SK, Singh U, Kumar M (2014c) Estimation for the parameter of Poisson-exponential distribution under Bayesian paradigm. J Data Sci 12(2014):157–173

    MathSciNet  Google Scholar 

  • Smith AFM (1991) Bayesian computational methods. Philos Trans Phys Sci Eng 337(1647):369–386

    MathSciNet  MATH  Google Scholar 

  • Tomazella VLD, Cancho VG, Louzada F (2013) The Bayesian reference analysis for the Poisson-exponential lifetime distribution. Chil J Stat 4(1):99–113

    MathSciNet  Google Scholar 

  • Tse SK, Yang C, Yuen HK (2000) Statistical analysis of Weibull distributed life time data under type ii progressive censoring with binomial removals. J Appl Stat 27(8):1033–1043

    Article  Google Scholar 

  • Zea LM, Silva RB, Bourguignon M, Santos AM, Cordeiro GM (2012) The Beta exponentiated Pareto distribution with application to bladder cancer susceptibility. Int J Stat Probab 1(2):8–19

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank editors and referees for there constructive comments and suggestions which improved and enriched the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Appendices

Appendix 1: Proof of Theorem

The conditional density of the random variable \(X = max(Y_{1, 2, \ldots ,} Y_{N})\) is given by

$$\begin{aligned} f(x|N=n,\lambda )&=n f(x)\left[ F(x)\right] ^{n-1};\quad x> 0,\quad \lambda > 0\nonumber \\&= \frac{n\lambda }{ x^2} e^{-\frac{n\lambda }{x}}. \end{aligned}$$

Then the joint distribution of X and N is given by:

$$\begin{aligned} f(X, N)&= P(N = n)f(x|N=n,\lambda ) \nonumber \\&= \frac{n\lambda }{ x^2} e^{-\frac{n\lambda }{x}} \frac{e^{-\theta }\theta ^{n}}{n!\left[ 1-e^{-\theta }\right] };\quad x> 0,\quad \lambda , \theta > 0. \end{aligned}$$

The marginal pdf of X can be easily obtained as follows:

$$\begin{aligned} f(x)&= \sum _{n=1}^{\infty }f(X, N)\nonumber \\&= \sum _{n=1}^{\infty }\frac{n\lambda }{ x^2} e^{-\frac{n\lambda }{x}} \frac{e^{-\theta }\theta ^{n}}{n!\left[ 1-e^{-\theta }\right] } \nonumber \\&= \frac{\theta \lambda e^{-\theta -\frac{\lambda }{x}}}{(1-e^{-\theta })x^{2}}\sum _{n=1}^{\infty } \frac{\left[ \theta e^{-\frac{\lambda }{x}})\right] ^{n-1}}{(n-1)!}\nonumber \\&= \frac{\theta \lambda e^{-\theta -\frac{\lambda }{x}+\theta e^{-\frac{\lambda }{x}}}}{(1-e^{-\theta })x^2}. \end{aligned}$$

Appendix 2: Proof for h(0) and \(h(\infty ) = 0\)

Since the failure rate function with \(\lim _{x\rightarrow 0} h(x; \lambda , \theta )\) and \(\lim _{x\rightarrow \infty } h(x; \lambda , \theta )\) are given as

$$\begin{aligned} \lim _{x\rightarrow 0} h(x; \lambda , \theta )&=\lim _{x\rightarrow 0} {\frac{\theta e^{\theta \left( e^{-\frac{\lambda }{x}}-1\right) } \lambda e^{-\frac{\lambda }{x}}}{x^2 \left( 1-e^{\theta \left( e^{-\frac{\lambda }{x}}-1\right) }\right) }}\\&= \lim _{x\rightarrow 0}{\frac{\theta e^{\theta \left( e^{-\frac{\lambda }{x}}-1\right) }}{\left( 1-e^{\theta \left( e^{-\frac{\lambda }{x}}-1\right) }\right) }} \lim _{x\rightarrow 0} {\frac{ \lambda e^{-\frac{\lambda }{x}}}{x^2}}\\&=\left( \frac{\theta e^{-\theta }}{1-e^{-\theta }}\right) \lim _{x\rightarrow 0} {\frac{ \lambda e^{-\frac{\lambda }{x}}}{x^2}} = 0, \end{aligned}$$

and

$$\begin{aligned} \lim _{x\rightarrow \infty } h(x; \lambda , \theta )&=\lim _{x\rightarrow \infty } {\frac{\theta e^{\theta \left( e^{-\frac{\lambda }{x}}-1\right) } \lambda e^{-\frac{\lambda }{x}}}{x^2 \left( 1-e^{\theta \left( e^{-\frac{\lambda }{x}}-1\right) }\right) }}\\&= \lim _{x\rightarrow \infty }{\frac{\theta e^{\theta \left( e^{-\frac{\lambda }{x}}-1\right) }}{\left( 1-e^{\theta \left( e^{-\frac{\lambda }{x}}-1\right) }\right) }} \lim _{x\rightarrow \infty } {\frac{ \lambda e^{-\frac{\lambda }{x}}}{x^2}}\\&=\left( \frac{\theta e^{-\theta }}{1-e^{-\theta }}\right) \lim _{x\rightarrow \infty } {\frac{ \lambda e^{-\frac{\lambda }{x}}}{x^2}} = 0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Singh, S.K. & Singh, U. Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal. Int J Syst Assur Eng Manag 9, 1235–1249 (2018). https://doi.org/10.1007/s13198-018-0704-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-018-0704-2

Keywords