Skip to main content
Log in

Bayesian estimation of \(R=P[Y<X]\) for inverse Lomax distribution under progressive type-II censoring scheme

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In this article, we propose the estimation procedure to estimate the stress-strength reliability parameter \(R=P[Y<X]\) for inverse Lomax distribution when available information on strength (X) and stress (Y) are progressively type-II censored. Maximum likelihood estimator, uniformly minimum variance unbiased estimator and Bayes estimator are derived in the presence of progressive type-II censoring scheme. It is obvious that censoring adds complexity; thus the estimators do not appear in the explicit form. Therefore, numerical approximation techniques have been used to secure the estimates of the parameters. The comparison among the proposed estimators are made by performing the Monte Carlo simulation study, and finally three data sets have been used to demonstrate the study in real life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asgharzadeh A, Valiollahi R, Raqab MZ (2011) Stress-strength reliability of Weibull distribution based on progressively censored samples. SORT 35:103–124

    MathSciNet  MATH  Google Scholar 

  • Asgharzadeh A, Kazemi M, Kundu D (2015) Estimation of \(P[X > Y ]\) for Weibull distribution based on hybrid censored samples. Int J Syst Assur Eng Manag 1:1. https://doi.org/10.1007/s13198-015-0390-2

    Article  Google Scholar 

  • Awad AM, Azzam MM, Hamdan MA (1981) Some inference results in \(P(X>Y)\) in the bivariate exponential model. Commun Stat Theory Methods 10:2515–2524

    Article  Google Scholar 

  • Baklizi A (2008) Estimation of \(Pr(X < Y)\) using record values in the one and two parameter exponential distributions, communications. Stat Theory Method 37(5):692–698. https://doi.org/10.1080/03610920701501921

    Article  MATH  Google Scholar 

  • Baklizi A (2008) Likelihood and Bayesian estimation of \(P(Y<X)\) using lower record values from the generalized exponential distribution. Comput Stat Data Anal 52:3468–3473

    Article  MathSciNet  MATH  Google Scholar 

  • Baklizi A (2012) Inference on \(P(Y<X)\) in the two-parameter Weibull model based on records. ISRN Probab Stat 2012:1–11

    Article  MATH  Google Scholar 

  • Balakrishnan N (2007) Progressive censoring methodology: an appraisal. Test 16:211–296

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Sandhu RA (1995) A simple simulation algorithm for generating progressive type-II censored samples. Am Stat 49(2):229–230

    Google Scholar 

  • Chhikara RS, Folks JL (1977) The inverse Gaussian distribution as a lifetime model. Technometrics 19:461–468

    Article  MATH  Google Scholar 

  • Cohen AC (1963) Progressively censored samples in life testing. Technometrics 5:327–339

    Article  MathSciNet  MATH  Google Scholar 

  • Collett D (2003) Modelling survival data in medical research. 2. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Efron B (1988) Logistic regression, survival analysis, and the Kaplan–Meier curve. J Am Stat Assoc 83:414–425

    Article  MathSciNet  MATH  Google Scholar 

  • Hasan AS, Abd-Allah M, Nagy HF (2018) Estimation of \(P(Y<X)\) using record values from the generalized inverted exponential distribution. Pak J Stat Oper Res XIV(3):645–660

    Article  MathSciNet  Google Scholar 

  • Kundu D, Gupta RD (2005) Estimation of \(P(Y < X)\) for generalized exponential distribution. Metrika 61(3):291–308

    Article  MathSciNet  MATH  Google Scholar 

  • Lee ET, Wang JW (2003) Statistical methods for survival data analysis, 3rd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Lindley DV (1980) Approximate Bayes method. Trabajos deestadistica 31:223–237

    Google Scholar 

  • Linhart H, Zucchini W (1986) Model selection. Wiley, New York

    MATH  Google Scholar 

  • Rahman J, Aslam M, Sajid Ali (2013) Estimation and prediction of inverse lomax model via Bayesian approach. Casp J Appl Sci Res 2(3):43–56

    Google Scholar 

  • Raqab MZ (2002) Inferences for generalized Lomax distribution based on record statistics. J Stat Plan Inference 104:339–350

    Article  MATH  Google Scholar 

  • Raqab MZ, Kundu D (2005) Comparison of different estimators of \(P(Y<X)\) for a scaled Burr type X distribution. Commun Stat Simul Comput 34(2):465–483

    Article  MathSciNet  MATH  Google Scholar 

  • Saracoglua B, Kinacia I, Kundu D (2012) On estimation of \(R=P(Y<X)\) for exponential distribution under progressive type-II censoring. J Stat Comput Simul 82(5):729–744

    Article  MathSciNet  Google Scholar 

  • Singh SK, Singh U, Yadav Abhimanyu S (2014a) Bayesian estimation of Marshall-Olkin extended exponential parameters under various approximation techniques. Hecettepe J Math Stat 43(2):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Singh SK, Singh U, Yadav Abhimanyu S (2014b) Parameter estimation in Marshall-Olkin exponential distribution under type-I hybrid censoring scheme. J Stat Appl Probab 3(2):1–11

    MathSciNet  Google Scholar 

  • Singh SK, Singh U, Yadav Abhimanyu S (2015) Bayesian estimation for extension of exponential distribution under progressive type-II censored data using Markov chain Monte Carlo method. J Stat Appl Probab 4(2):275–283

    Google Scholar 

  • Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc Ser B (Methodol) 55(1):3–23

    MathSciNet  MATH  Google Scholar 

  • Surles JG, Padgett WJ (1998) Inference for \(P(Y < X)\) in the Burr type X model. J Appl Stat Sci 7:225–238

    MATH  Google Scholar 

  • Upadhyay SK, Vasishta N, Smith A (2001) Bayes inference in life testing and reliability via markov chain Monte Carlo simulation. Sankhya A 63:15–40

    MATH  Google Scholar 

  • Yadav AS, Singh SK, Singh U (2016a) On hybrid censored inverse Lomax distribution: application to the survival Data,STATISTICA, anno LXX, n

  • Yadav AS, Singh SK, Singh U (2016b) Reliability estimation for inverse Lomax distribution under type-II censored data using Markov chain Monte Carlo method. Int J Math Stat 17(1):128–146

    MathSciNet  MATH  Google Scholar 

  • Yadav AS, Singh SK, Singh U (2018) Estimation of stress-strength reliability for inverse Weibull distribution under progressive type II censoring scheme. J Ind Prod Eng 35(1):48–55. https://doi.org/10.1080/21681015.2017.1421590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhimanyu Singh Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.S., Singh, S.K. & Singh, U. Bayesian estimation of \(R=P[Y<X]\) for inverse Lomax distribution under progressive type-II censoring scheme. Int J Syst Assur Eng Manag 10, 905–917 (2019). https://doi.org/10.1007/s13198-019-00820-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-019-00820-x

Keywords