Skip to main content
Log in

Gravitational search algorithm based optimization technique for enhancing the performance of self excited induction generator

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In wind based micro generation schemes, 3-phase self excited induction generators are prominently used in order to fulfil single phase load requirement. Hence in this context, this paper presents a 3-phase, 5.5 kW, 415 V, 50 Hz short shunt self excited induction generator for improving the voltage regulation and optimum performance of induction machine by using heuristic approach named as gravitational search algorithm. It is used in order to get the optimum capacitance values at specified speed for optimized voltage regulation and performance characteristics in terms of root mean square error and mean absolute error and mean square error. This optimization technique works on Newton law of gravity and it provides average best results for validating the performance in order to enhance machine parameters used in wind energy conversion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

INDC:

Intended nationally determined contributions

UNFCCC-COP21:

United Nations framework convention on climate change-conference of parties 21

IG:

Induction generator

SEIG:

Self excited induction generator

ANFIS:

Adaptive neuro fuzzy inference system

SUMT:

Sequential unconstrained minimization technique

PWM:

Pulse width modulation

GSA:

Gravitational search algorithm

HHT:

Hilbert–Huang transform

NR:

Newton Raphson method

Xro :

Blocked rotor reactance (pu)

Rs, Rr :

Per phase stator and rotor resistance (pu)

Xs, Xr :

Per phase stator and rotor leakage reactance (pu)

Xm, X unsm :

Magnetizing and unsaturated magnetizing reactance per phase (pu)

F, v :

Frequency of generated voltage and prime mover speed (pu)

Css, Cse :

Shunt and series capacitance (µF)

Xss, Xse :

Reactance offered by Css, Cse (pu)

Rl, Xl :

Load resistance and reactance (pu)

€:

Constant

Rij :

Euclidian distance between agent i and j

References

  • Basset ED, Potter FM (1935) Capacitive excitation for induction generator. AIEE Trans Electr Eng 54:540–545

    Article  Google Scholar 

  • Bonert R, Rajakaruna S (1998) Self excited generator with excellent voltage and frequency control. IEEE Proc Gener Transm Distrib 145(1):33–39

    Article  Google Scholar 

  • Chaturvedi Y, Goel A (2019) Wind powered electricity generation through self-excited induction generator. Int Sci J World Sci News 121:95–105

    Google Scholar 

  • Chauhan YK, Jain SK, Singh B (2010) A prospective on voltage regulation of self-excited induction generator for industry applications. IEEE Trans Ind Appl 46(2):720–730

    Article  Google Scholar 

  • Chauhan YK, Jain SK, Singh B (2011) Genetic algorithm-based optimum performance of compensated self-excited induction generator. Int J Model Simul 1(4):263–270

    Google Scholar 

  • Chauhan YK, Yadav VK, Singh B (2013) Optimum utilisation of self-excited induction generator. IET Electr Power Appl 7(9):680–692

    Article  Google Scholar 

  • Chen D, Liu S, Ma X (2013) Modeling nonlinear dynamical analysis of a novel power system with random wind power and it’s control. Energy 53(C):139–146

    Article  Google Scholar 

  • Elder JM, Boys JT, Woodward JL (1985) Integral cycle control of standalone generators. IEE Proc Gener Transm Distrib 132(2):57–66

    Article  Google Scholar 

  • Enany A (2014) Steady state modelling and ANFIS based analysis of self-excited induction generator. Wind Eng 38(3):349–358

    Article  Google Scholar 

  • Hannan MA, Ali JA, Mohamed A, Hussain A (2018) Optimization techniques to enhance the performance of induction motor drives: a review. Renew Sustain Energy Rev 81:1611–1626

    Article  Google Scholar 

  • Henderson D (1998) An advanced electrical load governor for control of micro hydro electric generator. IEEE Trans Energy Convers 13(3):300–304

    Article  Google Scholar 

  • Jyotrimayee D (2016) Fault classification in SEIG system using Hilbert–Huang transform and least square support vector machine. Int J Electr Power Energy Syst 76:11–22

    Article  Google Scholar 

  • Khan F, Khan R, Iqbal A (2017) Modeling implementation and analysis of a high (six) phase self-excited induction generator. J Electr Syst Inf Technol 156:1–18

    Google Scholar 

  • Krause PC, Thomas CH (1965) Simulation of symmetrical induction machinery. IEEE Trans Power Appar Syst 84(11):1038–1053

    Article  Google Scholar 

  • Lee RJ, Pillay P, Harley RG (1984) D, Q reference frames for the simulation of induction motors. Electr Power Syst Res 8:15–26

    Article  Google Scholar 

  • Levi E (1995) Analytical approach to main flux saturation modeling in D-Q axis model of induction machine. IEEE Trans Energy Convers 10(3):305–313

    Article  MathSciNet  Google Scholar 

  • Levi E (1997) Impact of cross saturation on accuracy of saturated induction machine model. IEEE Trans Energy Convers 12(3):211–216

    Article  MathSciNet  Google Scholar 

  • Mahato SN, Singh SP, Sharma MP (2008) Capacitor requirement for maximum power of self-excited single phase induction generator using three phase machine. IEEE Trans Energy Convers 23(2):372–381

    Article  Google Scholar 

  • Murthy SS, Singh B, Sandeep V (2016) Experience in developing a single phase two winding 5 kW self excited induction generator for off-grid renewable energy based power generation. J Inst Eng (India) Ser B 97(2):127–137

    Article  Google Scholar 

  • Rashedi E, Nezamabdi H, Saryazdi S (2009) GSA: A gravitational search algorithm. Inform Sci 179:2232–2248

    Article  Google Scholar 

  • Saha SK, Sandhu KS (2018) Optimization techniques for the analysis of self-excited induction generator. In: 6th International conference on smart computing and communications (ICSCC), vol 125, pp 405–411

    Article  Google Scholar 

  • Satpathy AS, Kastha D, Kishore NK (2018) Optimization of the excitation capacitor of a STATCOM assisted self-excited induction generator based wind energy conversion system. In: IECON 2018-44th annual conference of the IEEE industrial electronics society, pp 1904–1909

  • Teng K, Lu Z, Long J, Wang Y, Roskilly AP (2019) Voltage buildup analysis of self-excited induction generator with multi-time scale reduced-order model. IEEE Access 7:48003–48012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Paliwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Specification of self excited induction generator

5.5 kW, 415 V, 10.1 A (line), Δ connected, 4 Pole, 50 Hz

Rs = 0.0632pu, Rr = 0.0247pu, Xs = 0.0633pu, Xr = 0.0632pu, X unsm  = 3.48 pu.

Appendix 2: Coefficients of Ztotal

The coefficients P and Q are defined as:

$$P_{1} = - x_{s} \cdot r_{L} (x_{r} + x_{m} ) - x_{r} \cdot r_{L} \cdot x_{m}$$
$$P_{2} = x_{s} \cdot r_{L} \cdot v \cdot (x_{r} + x_{m} ) + x_{r} \cdot r_{L} \cdot x_{m} \cdot v$$
$$P_{3} = r_{s} \cdot r_{r} \cdot r_{L} + x_{s} \cdot x_{c} \cdot x_{r} + (r_{s} \cdot x_{c} + r_{L} \cdot x_{c} ) \cdot (x_{r} + x_{m} ) + r_{r} \cdot x_{m} \cdot x_{c}$$
$$P_{4} = ( - v \cdot r_{s} \cdot x_{c} - v \cdot r_{L} \cdot x_{c} )(x_{r} + x_{m} )$$
$$P_{5} = 0$$
$$Q_{1} = 0$$
$$Q_{2} = x_{s} \cdot r_{L} \cdot r_{r} + (x_{r} + x_{m} ) \cdot (r_{s} \cdot r_{L} + x_{s} \cdot x_{c} ) + x_{m} \cdot r_{r} \cdot r_{L} + x_{m} \cdot x_{c} \cdot x_{r}$$
$$Q_{3} = (x_{r} + x_{m} ) \cdot ( - r_{s} \cdot r_{L} \cdot v - x_{s} \cdot x_{c} \cdot v)x_{m} \cdot v \cdot x_{r}$$
$$Q_{4} = - r_{L} \cdot x_{c} \cdot r_{r} - r_{s} \cdot r_{r} \cdot x_{c}$$

The performance parameters are:

  • vg = vg1 * freq

  • zs = rs + j(freq.Xs)

  • zr = freq.Rr/(freq − v) + jfreq.Xr;

  • zcL = − jrL(xc/freq)/(rL − jxc/freq)

  • is = vg/(zs + zcL)

  • isss = abs(is)

  • iL = (− j(xc/freq)/(− j(xc/freq) + rL)).is

  • iLrms = abs(iL)

  • otpr = iLrms * rL

  • vt = iLrms * (rL)

  • var = vt * freq/xc

  • ir = − vg/zr

  • irrms = abs(ir)

The complete methodology adopted for optimum performance of SEIG machine has been shown in Fig. 7. The flowchart includes all the steps from machine parameters to performance characteristics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliwal, S., Sinha, S.K. & Chauhan, Y.K. Gravitational search algorithm based optimization technique for enhancing the performance of self excited induction generator. Int J Syst Assur Eng Manag 10, 1082–1090 (2019). https://doi.org/10.1007/s13198-019-00838-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-019-00838-1

Keywords