Skip to main content

Advertisement

Log in

Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

This paper deals with maximum power point tracking control (MPPT) of wind turbines systems based on double fed induction generator (DFIG). To minimize the variable and random character of wind speed impact on the wind turbine system, a maximum power point tracking algorithm based on sliding mode control is proposed. The MPPT algorithm is designed with sliding-mode control theory, this solution shows good robustness with respect to parameter variations, measurement errors and robustness with respect to external disturbances and unmodeled dynamics (DFIG-WT). A comparative study is elaborated using PI, first and second order sliding mode controllers. The simulation results confirm the effectiveness of the proposed approach either in transient and steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

p:

Number of pole pairs

R:

Blade radius

G:

Gear ratio

\(T_{e} ,\,T_{WT} ,\,T_{G}\) :

Electromagnetic, wind turbine and output gearbox torque (N m)

\(P_{s} ,\,P_{r}\) :

Stator and rotor active power (W)

\(P{}_{WT}\) :

Wind turbine power (W)

\(v\) :

Wind speed (m s−1)

\(R_{s} ,\,R_{r}\) :

Stator and rotor resistor \((\Omega )\)

\(L_{s} ,\,L_{r}\) :

Stator and rotor self induction (H)

\(M\) :

Mutual magnetizing induction (H)

\(\,J_{g} ,\,J_{WT} ,\,J\) :

Generator, wind turbine, total inertia moment (kg m2)

\(f_{g} ,\,f_{WT} ,\,f\) :

Generator, wind turbine, total friction coefficient (N m s−1)

\(P\) :

Active load power (W)

\(Q\) :

Reactive load power (VAR)

\(Cp,\,\,Cp_{\hbox{max} }\) :

Power coefficient and its maximum

\(g\) :

Slip

\(u_{s} ,\,u_{sd} ,\,u_{sq} \,\) :

Stator voltage and its direct and quadrate components (V)

\(i_{r} ,\,i_{rd} ,\,i_{rq} \,\) :

Rotor current and its direct and quadrate components (A)

\(\Omega _{WT} ,\,\Omega _{g} ,\,\Omega\) :

Wind turbine, generator and rotor mechanical angular speed (rd s−1)

\(\omega {}_{WT}\) :

Angular rotor frequency (rd s−1)

\(\omega_{s} ,\,\omega_{r}\) :

Stator and rotor current frequency (rd s−1)

\(\rho\) :

Air density (kg m−3)

\(\lambda ,\,\,\lambda_{opt}\) :

Speed ratio and its tip value

VSCF:

Variable speed constant frequency

WECS:

Wind energy conversion system

DFIG:

Doubly fed induction generator

MPPT:

Maximum power point tracking

PIC:

Proportional integrator controller

SMC:

Sliding mode controller

FLC:

Fuzzy logic controller

SOSMC:

Second order sliding mode controller

References

  • Abdelqawee IM, Yousef AY, Hasaneen KM, Nashed MNF, Hamed HG (2019) Standalone wind energy conversion system control using new maximum power point tracking technique. Int J Emerg Technol Adv Eng Certif J 9(2):95–100

    Google Scholar 

  • Alsumiri M, Li L, Jiang L, Tang W (2018) Residue theorem based soft sliding mode control for wind power generation systems. Prot Control Mod Power Syst 3:24

    Article  Google Scholar 

  • Bakouri A, Mahmoudi H, Barara M, Abbou A, Bennassar A, Moutchou M (2015) A complete control startegy of DFIG connected to the grid for wind energy conversion systems. In: International renewable and sustainable energy conference, pp 330–335

  • Bakouri A, Mahmoudi H, Abbou A (2016) Modeling and optimal control of the doubly fed induction generator wind turbine system connected to utility grid. In: International renewable and sustainable energy conference (IRSEC), IEEE

  • Benhadouga S, Meddad M, Eddiai A, Boukhetala D, Khenfer R (2019) Sliding mode control for MPPT of a thermogenerator. J Electron Mater 48(4):2103–2104

    Article  Google Scholar 

  • Bouchiba N, Barkia A, Chrifi-Alaoui L, Drid S, Sallem S, Kammoun MBA (2017) Real-time integration of control strategies for an isolated DFIG-based WECS. Eur Phys J Plus 132:334

    Article  Google Scholar 

  • Chakib M, Essadki A, Nasser T (2018) A comparative study of PI, RST and ADRC control strategies of a doubly fed induction generator based wind energy conversion system. Int J Renew Energy Res 8(2):964–973

    Google Scholar 

  • Cheikh R, Menacer A, Chrifi-Alaoui L, Drid S (2018) Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system. Front Energy 14:180–191

    Article  Google Scholar 

  • Dev A, Kanti Sarkar M (2019) Robust higher order observer based non-linear super twisting load frequency control for multi area power systems via sliding mode. Int J Control Autom Syst 17(7):1814–1825

    Article  Google Scholar 

  • El Azzaoui M, Mahmoudi H (2017) Modeling, control and analysis of a doubly fed induction generator based wind turbine system: optimization of the power produced. WSEAS Trans Power Syst 12:39–48

    Google Scholar 

  • El Yaakoubi A, Attari K, Asselman A, Djebli A (2017) Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG. Front Energy 13:742–756

    Article  Google Scholar 

  • Ghafouri M, Karaagac U, Karimi H, Mahseredjian J (2019) Robust subsynchronous interaction damping controller for DFIG based wind farms. J Mod Power Syst Clean Energy 7:1663–1674

    Article  Google Scholar 

  • Kahla S, Sedraoui M, Bechouat M, Soufi Y (2018) Robust fuzzy on–off synthesis controller for maximum power point tracking of wind energy conversion. Trans Electr Electron 19:146–156

    Article  Google Scholar 

  • Kim K, Kim H-G, Kim C-J, Paek I, Bottasso CL, Campagnolo F (2018) Design and validation of demanded power point tracking control algorithm of wind turbine. Int J Precis Eng Manuf Green Technol 5(3):387–400

    Article  Google Scholar 

  • Kim K, Kim H, Paek I (2019) Field validation of demanded power point tracking control algorithm for medium-capacity wind turbine. Int J Precis Eng Manuf Green Technol 6(875):881

    Google Scholar 

  • Lahlou Z, Ben Meziane K, Boumhidi I (2019) Sliding mode controller based on type-2 fuzzy logic PID for a variable speed wind turbine. Int J Syst Assur Eng Manag 10:543–551

    Article  Google Scholar 

  • Mahboub MA, Drid S, Sid MA, Cheikh R (2017) Sliding mode control of grid connected brushless doubly fed induction generator driven by wind turbine in variable speed. Int J Syst Assur Eng Manag 8:788–798

    Article  Google Scholar 

  • Maissa F, Barambones O, Lassad S, Fleh A (2017) A robust MPP tracker based on sliding mode control for a photovoltaic based pumping system. Int J Autom Comput 14:489–500

    Article  Google Scholar 

  • Mazouz F, Belkacem S, Colak I, Drid S, Harbouche Y (2020) Adaptive direct power control for double fed induction generator used in wind turbine. Electr Power Energy Syst 114:105395

    Article  Google Scholar 

  • Meghni B, Dib D, Azar A-T (2017) A second-order sliding mode and fuzzy logic control to optimal energy management in wind turbine with battery storage. Neural Comput Appl 28:1417–1434

    Article  Google Scholar 

  • Moussa O, Abdessemed R, Benaggoune S (2019) Super-twisting sliding mode control for brushless doubly fed induction generator based on WECS. Int J Syst Assur 10:1145–1157

    Article  Google Scholar 

  • Mozafarpoor-Khoshrodi SH, Shahgholian G (2016) Improvement of perturb and observe method for maximum power point tracking in wind energy conversion system using fuzzy controller. Energy Equip Syst 4(2):111–122

    Google Scholar 

  • Saihi L, Boutera A (2016) Robust control of a variable-speed wind turbine with fixed pitch angle and strategy MPPT control associated on a PMSG. In: 8th international conference on modelling, identification and control (ICMIC), pp 326–331

  • Tria FZ, Srairi K, Benchouia MT, Benbouzid MEH (2017) An integral sliding mode controller with super-twisting algorithm for direct power control of wind generator based on a doubly fed induction generator. Int J Syst Assur Eng Manag 8(4):762–769

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Slimane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 2, 3, 4.

Table 2 4 kW DFIG parameters
Table 3 WT parameters
Table 4 Control parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimane, W., Benchouia, M.T., Golea, A. et al. Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator. Int J Syst Assur Eng Manag 11, 716–727 (2020). https://doi.org/10.1007/s13198-020-00987-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-020-00987-8

Keywords

Navigation