Skip to main content

Advertisement

Log in

Integration of pricing and inventory decisions of deteriorating item in a decentralized supply chain: a Stackelberg-game approach

  • Original article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

In the present worldwide highly competitive markets, competition occurs among the supply chain members on behalf of organizations. In this way, partners of the supply chain try to apply effective coordination to increase market shares. Because of the significance and utilization of inventory decisions and pricing strategies on accepting a product in the current business scenario, in this study, decentralized channel coordination is generalized to increase the profitability of a two-echelon supply chain. Here, a one-manufacturer–one-retailer supply chain mechanism for the deteriorating product with a leader–follower relationship under price-dependent demand is developed. Up-stream member-manufacturer sells the on-hand item to the downstream member-retailer in which the retailer faces off the customer. This model considers the effect of the deterioration of the product, selling price of both the channel members, cycle duration, idle time, ordering lot size in a decentralized supply chain system. The Stackelberg game method has been used considering the retailer as a leader and manufacturer as a follower to optimize the sales price of channel members and time–length up to zero manufacturer inventory for maximum profit. Finally, a numerical example and sensitivity analysis are given to demonstrate the model. The result shows that manufacturer profit is far better than the retailer profit though the retailer’s selling price is higher than that of the manufacturer’s selling price. Also, a little change in the manufacturing cost is highly sensitive for the profit of the channel members, which encourages the manufacturer to reduce the manufacturing cost and increases supply chain profit as well as channel members profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bai QG, Xu XH, Chen MY, Luo Q (2015) A two-echelon supply chain coordination for deteriorating item with a multi-variable continuous demand function. Int J Syst Sci Oper Logisti 2(1):49–62

    Google Scholar 

  • Barman A, Das R, De PK (2020) An analysis of retailer’s inventory in a two-echelon centralized supply chain co-ordination under price-sensitive demand. SN Appl Sci 2(12):1–15

    Article  Google Scholar 

  • Barman A, Das R, De PK (2021a) An analysis of optimal pricing strategy and inventory scheduling policy for a non-instantaneous deteriorating item in a two-layer supply chain. Appl Intell. https://doi.org/10.1007/s10489-021-02646-2

  • Barman A, Das R, De PK (2021b) Optimal pricing and greening decision in a manufacturer retailer dual-channel supply chain. Mater Today Proc 42:870–875

    Article  Google Scholar 

  • Barman A, Das R, De PK (2021c) Optimal pricing, replenishment scheduling and preservation technology investment policy for multi-item deteriorating inventory model under shortages. Int J Model Simul Sci Comput 2150039

  • Cachon GP (2003) Supply chain coordination with contracts. Handb Oper Res Manag Sci 11:227–339

    Google Scholar 

  • Cárdenas-Barrón LE, Sana SS (2014) A production–inventory model for a two-echelon supply chain when demand is dependent on sales teams initiatives. Int J Prod Econ 155:249–258

    Article  Google Scholar 

  • Cheaitou A, Khan SA (2015) An integrated supplier selection and procurement planning model using product predesign and operational criteria. Int J Interact Des Manuf (IJIDeM) 9(3):213–224

    Article  Google Scholar 

  • Chen TH (2011) Coordinating the ordering and advertising policies for a single-period commodity in a two-level supply chain. Comput Ind Eng 61(4):1268–1274

    Article  Google Scholar 

  • Cheng MC, Hsieh TP, Lee HM, Ouyang LY (2020) Optimal ordering policies for deteriorating items with a return period and price-dependent demand under two-phase advance sales. Oper Res 20(2):585–604

    Google Scholar 

  • Das R, De PK, Barman A (2020) Co-ordination of a two-echelon supply chain with competing retailers where demand is sensitive to price and quality of the product. In: Mathematical modeling, computational intelligence techniques and renewable energy: proceedings of the first international conference, MMCITRE 2020. Springer

  • Das R, De PK, Barman A (2021) Pricing and ordering strategies in a two-echelon supply chain under price-discount policy: a Stackelberg game approach. J Manag Anal. https://doi.org/10.1080/23270012.2021.1911697

  • Dong JF, Shao-Fu D, Yang S, Liang L (2008) Competitive pricing and replenishment policies in distributed supply chain for a deteriorating item: a game approach. Asia Pac Manag Rev 13(2):497–512

    Google Scholar 

  • Feng L, Zhang J, Tang W (2015) A joint dynamic pricing and advertising model of perishable products. J Oper Res Soc 66(8):1341–1351

    Article  Google Scholar 

  • Gautam P, Kishore A, Khanna A, Jaggi CK (2019) Strategic defect management for a sustainable green supply chain. J Clean Prod 233:226–241

    Article  Google Scholar 

  • Ghare P (1963) A model for an exponentially decaying inventory. J Ind Eng 14:238–243

    Google Scholar 

  • Giri BC, Bardhan S (2012) Supply chain coordination for a deteriorating item with stock and price-dependent demand under revenue sharing contract. Int Trans Oper Res 19(5):753–768

    Article  MathSciNet  Google Scholar 

  • Giri B, Roy B, Maiti T (2017) Coordinating a three-echelon supply chain under price and quality dependent demand with sub-supply chain and RFM strategies. Appl Math Modell 52:747–769

    Article  MathSciNet  Google Scholar 

  • Hou KL (2006) An inventory model for deteriorating items with stock-dependent consumption rate and shortages under inflation and time discounting. Eur J Oper Res 168(2):463–474

    Article  MathSciNet  Google Scholar 

  • Hou J, Zeng AZ, Zhao L (2009) Achieving better coordination through revenue sharing and bargaining in a two-stage supply chain. Comput Ind Eng 57(1):383–394

    Article  Google Scholar 

  • Hsieh TP, Dye CY (2010) Pricing and lot-sizing policies for deteriorating items with partial backlogging under inflation. Expert Syst Appl 37(10):7234–7242

    Article  Google Scholar 

  • Kamna K, Gautam P, Jaggi CK (2021) Sustainable inventory policy for an imperfect production system with energy usage and volume agility. Int J Syst Assur Eng Manag 12(1):44–52

    Article  Google Scholar 

  • Khanna A, Gautam P, Hasan A, Jaggi CK (2020) Inventory and pricing decisions for an imperfect production system with quality inspection, rework and carbon-emissions. Yugoslav J Oper Res 30(3):339–360

    Article  MathSciNet  Google Scholar 

  • Kumar RS, Tiwari M, Goswami A (2016) Two-echelon fuzzy stochastic supply chain for the manufacturer–buyer integrated production–inventory system. J Intell Manuf 27(4):875–888

    Article  Google Scholar 

  • Li J, Liu L (2006) Supply chain coordination with quantity discount policy. Int J Prod Econ 101(1):89–98

    Article  MathSciNet  Google Scholar 

  • Mahmoodi A (2020) Pricing and inventory decisions in a manufacturer–Stackelberg supply chain with deteriorating items. Kybernetes 107:2411–2502

    Google Scholar 

  • Maihami R, Kamalabadi IN (2012) Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. Int J Prod Econ 136(1):116–122

    Article  Google Scholar 

  • Maihami R, Karimi B (2014) Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts. Comput Oper Res 51:302–312

    Article  MathSciNet  Google Scholar 

  • Mashud AHM, Uddin MS, Sana SS (2019) A two-level trade-credit approach to an integrated price-sensitive inventory model with shortages. Int J Appl Comput Math 5(4):121

    Article  MathSciNet  Google Scholar 

  • Min J, Zhou YW (2009) A perishable inventory model under stock-dependent selling rate and shortage-dependent partial backlogging with capacity constraint. Int J Syst Sci 40(1):33–44

    Article  MathSciNet  Google Scholar 

  • Pal B, Sana SS, Chaudhuri K (2012) Three-layer supply chain—a production–inventory model for reworkable items. Appl Math Comput 219(2):530–543

    MathSciNet  MATH  Google Scholar 

  • Rad MA, Khoshalhan F, Glock CH (2018) Optimal production and distribution policies for a two-stage supply chain with imperfect items and price-and advertisement-sensitive demand: a note. Appl Math Modell 57:625–632

    Article  MathSciNet  Google Scholar 

  • Sana SS (2011) A production–inventory model of imperfect quality products in a three-layer supply chain. Decis Support Syst 50(2):539–547

    Article  Google Scholar 

  • Sarkar B (2013) A production–inventory model with probabilistic deterioration in two-echelon supply chain management. Appl Math Modell 37(5):3138–3151

    Article  MathSciNet  Google Scholar 

  • Sarkar B, Omair M, Kim N (2020) A cooperative advertising collaboration policy in supply chain management under uncertain conditions. Appl Soft Comput 88:105948

    Article  Google Scholar 

  • Taleizadeh AA, Noori-daryan M (2016) Pricing, manufacturing and inventory policies for raw material in a three-level supply chain. Int J Syst Sci 47(4):919–931

    Article  MathSciNet  Google Scholar 

  • Tiwari S, Cárdenas-Barrón LE, Goh M, Shaikh AA (2018) Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain. Int J Prod Econ 200:16–36

    Article  Google Scholar 

  • Van der Veen JA, Venugopal V (2005) Using revenue sharing to create win-win in the video rental supply chain. J Oper Res Soc 56(7):757–762

    Article  Google Scholar 

  • Wang X, Li D (2012) A dynamic product quality evaluation based pricing model for perishable food supply chains. Omega 40(6):906–917

    Article  Google Scholar 

  • Wei J, Liu Y, Zhao X, Yang X (2020) Joint optimization of pricing and inventory strategy for perishable product with the quality and quantity loss. J Ind Prod Eng 37(1):23–32

    Google Scholar 

  • Wu D (2011) Joint pricing–servicing decision and channel strategies in the supply chain. Cent Eur J Oper Res 19(1):99–137

    Article  MathSciNet  Google Scholar 

  • Xiao T, Xu T (2013) Coordinating price and service level decisions for a supply chain with deteriorating item under vendor managed inventory. Int J Prod Econ 145(2):743–752

    Article  Google Scholar 

Download references

Acknowledgements

This first author gratefully acknowledge the MHRD, Govt. of India for financially supporting her with a junior research fellowship.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Barman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Proof of Lemma 3

Second order principal minor follows

$$\begin{aligned} \bigtriangleup _2=&\frac{e^{\theta t_1}}{\theta t_1^3}(-1+e^{\theta t_1}) \Big (\frac{k h_m}{\theta } + \frac{h_m^2}{2 \theta ^2 }+ \frac{k^2}{2} \Big ) \nonumber \\&+ \Big (\frac{-1}{2}+e^{\theta t_1} -\frac{e^{2\theta t_1}}{4} \Big ) \frac{1}{2 \theta ^2 t_1^4} \Big (\frac{k h_m}{\theta } + \frac{h_m^2}{2 \theta ^2 } + \frac{k^2}{2} \Big ) \nonumber \\&+ \frac{e^{2 \theta t_1 }}{2 t_1^2} \Big (-\frac{c^2}{2}-\frac{k^2}{2}-kc-\frac{k h_m}{\theta } +\frac{h_m^2}{2 \theta ^2} \Big ) \nonumber \\&\times \Big ( -e^{\theta t_1}+ e^{2 \theta t_1}-\frac{1}{2 \theta }+\frac{e^{\theta t_1}}{\theta }-\frac{e^{2\theta t_1}}{2\theta } \Big ) \nonumber \\&\times \Big (k+\frac{c}{2}+\frac{h_m}{2} \Big ) \frac{c}{\theta t_1^3} + (a_1-b_1 p_m) \nonumber \\&\frac{2 e^{\theta t_1}b_1 t_1}{T^2} (k\theta +a_1 +c)-\frac{e^{2\theta t_1} h_m c}{2 \theta t_1^2} > 0 \end{aligned}$$
(A.1)

If,

$$\begin{aligned}&\Big ( \frac{k h_m}{\theta } + \frac{h_m^2}{2 \theta ^2 }+ \frac{k^2}{2} \Big ) \Big ( \frac{e^{\theta t_1}}{\theta t_1^3}+\frac{e^{\theta t_1}}{2 \theta ^2 t_1^4} \Big ) +\frac{h_m^2 e^{2 \theta t_1}}{4 \theta ^2 t_1^2} \nonumber \\&\qquad + \Big (k+\frac{c}{2}+\frac{h_m}{\theta } \Big )\frac{c}{\theta t_1^3} \Big (e^{2\theta t_1}+ \frac{e^{\theta t_1}}{\theta } \Big ) \nonumber \\&\qquad \times (a_1-b_1 p_m) \frac{2 e^{\theta t_1 }b_1 t_1}{k \theta +a_1+c} \nonumber \\&\quad > \Big ( \frac{k h_m}{\theta } + \frac{h_m^2}{2 \theta ^2 }+ \frac{k^2}{2} \Big ) \Big (\frac{1}{4 \theta ^2 t_1^4}+ \frac{e^{2 \theta t_1}}{8\theta ^2 t_1^4 }+ \frac{e^{\theta t_1}}{\theta t_1^3} \Big ) \nonumber \\&\qquad +\frac{e^{2 \theta t_1}h_m c}{2 \theta t_1^2} + \Big (\frac{c^2}{2}+\frac{k^2}{2}+kc+{\frac{k h_m}{\theta }} \Big ) \frac{e^{2 \theta t_1}}{2 t_1^2} \nonumber \\&\qquad + \Big ({e^{\theta t_1}}+\frac{1}{2\theta }+{2 \theta } \Big ) \frac{c}{\theta t_1^2} \Big (k+\frac{c}{2}+\frac{h_m}{\theta } \Big ) \end{aligned}$$
(A.2)

which implying the concavity of \(\varPi _m\) with respect to \(p_m\) and \(t_1\). □

Proof of Lemma 4

Taking the first order derivative of retailer profit function, we get

$$\begin{aligned} \frac{\partial \varPi _r}{\partial p_r}=&\frac{1}{B_1} \Big [ \frac{(1-e^{-\theta t_1})b_2 (a_1-b_1p_m)p_r}{\theta (a_2-b_2 p_r)(1+(1-e^{-\theta t_1})(-1+\frac{a_1-b_1p_m}{a_2-b_2 p_r}))} \nonumber \\&+(k+\frac{h_r}{\theta })(a_2-b_2 p_r) \Big \{-\frac{(1-e^{-\theta t_1})(a_1-b_1p_m)b_2}{\theta (a_2-b_2 p_r)^2} \nonumber \\&+\frac{(1-e^{-\theta t_1})(a_1-b_1p_m)b_2}{\theta (a_2-b_2 p_r)^2 \Big ( 1+(1-e^{-\theta t_1})(-1+\frac{a_1-b_1p_m}{a_2-b_2 p_r}) \Big ) } \Big \} \nonumber \\&- b_2 \Big (k+\frac{h_r}{\theta } \Big ) \Big [ \Big (\frac{1}{\theta }+\frac{B_2}{\theta } -\frac{e^{B_2}}{\theta } \Big ) - \Big (\frac{-1}{\theta }+\frac{e^{-\theta t_1}}{\theta }+ t_1 \Big )\Big ] \nonumber \\&-b_2 p_r \Big (\frac{B_2}{\theta }+t_1 \Big ) +(a_2-b_2 p_r) \Big (\frac{B_2}{\theta }+t_1 \Big ) \Big ] \nonumber \\&-\frac{A_1}{B_3}-\frac{A_2}{B_3}+\frac{A_3}{B_3} \end{aligned}$$
(A.3)

where,

$$\begin{aligned} A_1=&(1-e^{-\theta t_1})b_2(a_1-b_1 p_m)(a_2-b_2p_r) \Big (-A_r+\frac{k+h_r}{\theta } \Big ) \\&\times \Big ( \frac{1+log[1+(1-e^{-\theta t_1})(-1+\frac{a_1-b_1p_m}{a_2-b_2 p_r})]}{\theta } \Big ) \\ A_2=&p_m(a_1-b_1p_m)t_1+ (k+\frac{h_r}{\theta })(a_1-a_2-b_1p_m+b_2 p_r) \\&\times \Big (-\frac{1}{\theta }+\frac{e^{-\theta t_1}}{\theta }+t_1 \Big ) \\ A_3=&p_r(a_2-b_2p_r)log[1+(1-e^{-\theta t_1})] \Big (-1+\frac{a_1-b_1p_m}{a_2-b_2p_r} \Big ) \\ B_1=&t_1+\frac{log[1+(1-e^{-\theta t_1})(-1+\frac{a_1-b_1p_m}{a_2-b_2 p_r})]}{\theta } \\ B_2=&log \Big [1+(1-e^{-\theta t_1}) \Big (-1+\frac{a_1-b_1p_m}{a_2-b_2 p_r} \Big ) \Big ] \\ B_3=&\theta (a_2-b_2p_r)^2 \Big [1+(1-e^{-\theta t_1})(-1+\frac{a_1-b_1p_m}{a_2-b_2 p_r} ) \Big ] \\&\times (\frac{log[1+(-1+\frac{a_1-b_1p_m}{a_2-b_2 p_r})]}{\theta }+t_1)^2 \end{aligned}$$

Due to complexity of (A.3), we can not analytically obtained the value of \(p_r\) but the numerical simulation is done in Sect. 6 has also shown the numeric value of \(\frac{\partial ^2 \varPi _r}{\partial p_r^2}< 0\) . □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R., Barman, A. & De, P.K. Integration of pricing and inventory decisions of deteriorating item in a decentralized supply chain: a Stackelberg-game approach. Int J Syst Assur Eng Manag 13, 479–493 (2022). https://doi.org/10.1007/s13198-021-01299-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-021-01299-1

Keywords

Navigation