Skip to main content
Log in

A review of different ECG classification/detection techniques for improved medical applications

  • Review papers
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Electrocardiogram (ECG) is an important diagnostic tool in medical engineering, presented in the form of electrical signal. Its complete analysis requires three stages viz. pre-processing, feature extraction, and classification/detection. The last stage provides the final outcome; hence, its careful selection is very important. Unfortunately, due to diverse and widely varied data management practices, no single technique is absolutely preferred over others. Therefore, an extensive literature survey of various classification/detection techniques is presented, and their effects are summarized. Also, different techniques related to ECG arrhythmia classification and detection are proposed and evaluated on-the-basis-of figure-of-merits (FoMs) for improved medical applications. This proposed technique is important to extract important clinical/pathological attributes of the ECG signals. It ensures the novelty in the biomedical signal processing (BSP). In this article different existing techniques are compared in the light of proposed techniques for various ECG arrhythmias classification and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

Availability of data and materials

Software application which is developed by present authors.

Code Availability

Done by Varun Gupta.

References

  • Aarthy ST, Iqbal JLM (2021) Time series real time naive bayes electrocardiogram signal classification for efficient disease prediction using fuzzy rules. J Ambient Intell Human Comput 12:5257–5267. https://doi.org/10.1007/s12652-020-02003-0

    Article  Google Scholar 

  • Abdellatif Bouzid-Daho, Mohamed Boughazi, Eric Petit (2019) Detection of abnormal blood cells by segmentation and classification. Int J Med Eng Informatics 11(1):57–70

  • Acharya UR, Fujita H, Adam M, Lih OS, Sudarshan VK, Hong TJ, Koh JE, Hagiwara Y, Chua CK, Poo CK, San TR (2017) Automated characterization and classification of coronary artery disease and myocardial infarction by decomposition of ECG signals: a comparative study. Infor Sci 377:17–29

    Article  Google Scholar 

  • Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, Tan RS (2017) A deep convolutional neural network model to classify heartbeats. Comp Biol Med 89:389–396

    Article  Google Scholar 

  • Acharya UR, Fujita H, Lih OS, Hagiwara Y, Tan JH, Adam M (2017) Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Infor Sci 405:81–90

    Article  Google Scholar 

  • Ali Al-Yousef, Haytham Eloqayli, Mamoon Obiedat, Anwar Almoustafa (2021) Predicting treatment outcome of spinal musculoskeletal pain using artificial neural networks: a pilot study. Int J Med Eng Informatics 13(3):237–253

  • Alomar LM, Canals V, Mora NP, Moll VM, Rosselló JL (2016) FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting. Comput Intell Neuro. Available: https://doi.org/10.1155/2016/3917892.

  • Alqudah AM, Qazan S, Al-Ebbini L et al (2021) ECG heartbeat arrhythmias classification: a comparison study between different types of spectrum representation and convolutional neural networks architectures. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03247-0

    Article  Google Scholar 

  • Alshebly YS, Nafea M (2019) Isolation of Fetal ECG signals from abdominal ECG using wavelet analysis. https://doi.org/10.1016/j.irbm.2019.12.002, 2019.

  • Arpitha Y, Madhumathi GL, Balaji N (2021) Spectrogram analysis of ECG signal and classification efficiency using MFCC feature extraction technique. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-02926-2

    Article  Google Scholar 

  • Arzeno NM, Deng ZD, Poon CS (2008) Analysis of first-derivative based QRS detection algorithms. IEEE Trans Biomed Eng 55(2):478–484

    Article  Google Scholar 

  • Aya Naser, Manal Tantawi, Howida A. Shedeed, Tolba MF (2020) Automated EEG-based epilepsy detection using BA_SVM classifiers. Int J Med Eng Informatics 12(6):620–625

  • Bagirathan A, Selvaraj J, Gurusamy A et al (2021) Recognition of positive and negative valence states in children with autism spectrum disorder (ASD) using discrete wavelet transform (DWT) analysis of electrocardiogram signals (ECG). J Ambient Intell Human Comput 12:405–416. https://doi.org/10.1007/s12652-020-01985-1

    Article  Google Scholar 

  • Bansal S, Singh AK, Gupta N (2017) Optimal golomb ruler sequences generation for optical WDM systems: a Novel Parallel Hybrid Multi-objective Bat Algorithm. J Inst Eng India Ser B 98:43–64

    Article  Google Scholar 

  • Banu SS, Baskaran K (2018) Hybrid FGWO Based FLCs modeling for performance enhancement in wireless body area networks. Wireless Personal Commun 100:1163–1199. https://doi.org/10.1007/s11277-018-5626-4

    Article  Google Scholar 

  • Behera S, Tripathy RK, Mohanty S (2013) Least square support vector machine modelling of breakdown voltage of solid insulating materials in the presence of voids. J Inst Eng India Ser B 94:21–27. https://doi.org/10.1007/s40031-013-0039-y

    Article  Google Scholar 

  • Bensafia K, Mansour A, Boudraa AO et al (2020) Blind separation of ECG signals from noisy signals affected by electrosurgical artifacts. Analog Integr Circ Sig Process 104:191–204. https://doi.org/10.1007/s10470-020-01674-1

    Article  Google Scholar 

  • Bouaziz F, Boutana D, Benidir M (2014) Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET Signal Process 8(7):774–782

    Article  Google Scholar 

  • Cha WJ, Ryu GS, Lee JH, Cho WH, Jung YS, Park KH (2016) R-peak detection algorithm in ECG signal based on multi-scaled primitive signal. J Korea Multimedia Soc 19(5):818–825. Available: https://doi.org/10.9717/ kmms.2016.19.5.818.

  • Chakraborty M, Ghosh D (2018) Quantitative assessment of arrhythmia using non-linear approach: a non-invasive prognostic tool. J Inst Eng India Ser B 99(2):167–172

    Article  Google Scholar 

  • Chandra S, Gupta R, Ghosh S, Mondal S (2019) An intelligent and power efficient biomedical sensor node for wireless cardiovascular health monitoring. IETE J Res. https://doi.org/10.1080/03772063.2019.1611489

    Article  Google Scholar 

  • Chandra S et al (2020) A Comparative analysis of performance of several wavelet based ECG data compression methodologies. IRBM. https://doi.org/10.1016/j.irbm.2020.05.004

    Article  Google Scholar 

  • Chattopadhyay S, Sarkar G, Das A (2018) Sleep Apnea diagnosis by DWT-based Kurtosis, radar and histogram analysis of electrocardiogram. IETE J Res. https://doi.org/10.1080/03772063.2018.1507765

    Article  Google Scholar 

  • Chattopadhyay S, Sarkar G, Das A (2015) Sleep Apnea Diagnosis by DWT-Based Kurtosis, radar and histogram analysis of electrocardiogram. IETE J of Res 13(2):119–123

    Google Scholar 

  • Christov I (2004) Real time electrocardiogram QRS detection using combined adaptive threshold. BioMed Eng OnLine 3(28). https://doi.org/10.1186/14-925X-3-28.

  • Speaker Control, “Time Frequency Analysis (TFA) (2018). [Online]. Available: https://www.klippel.de/products/rd-system/modules/tfa-time-frequency-analysis.html.

  • Dhananjay Kalbande, Rohit Naik,Janvi Jatakia, Uday Khopkar (2020) An artificial intelligence approach for the recognition of early stages of eczema. Int J Med Eng Informatics 12(1):52–61

  • Divya BS, Kamalraj Subramaniam, Nanjundaswamy HR (2020) A study on indirect immunofluorescence image classification methods for bioinformatics. Int J Med Eng Informatics (IJMEI) 12(6).

  • Elhaj FA, Salim N, Harris AR, Sweeb TT, Ahmed T (2016) Arrhythmia recognition and classification usingcombined linear and nonlinear features of ECG signals. Comp Meth Prog Biomed 127:52–63

    Article  Google Scholar 

  • Engin M (2002) ECG-Late potential extraction using averaged singular—values of third-order cumulant (TOC) based bispectrum. Analog Integr Circ Sig Process 33:301–303. https://doi.org/10.1023/A:1020722030618

    Article  Google Scholar 

  • Fractional Fourier transform (2013) Fractional Fourier transform matlab source code,” Jan. 2013. [Online]. Available: https://in.mathworkscom/matlabcentral/fileexchange/41351-frft-m/.

  • Ghaith K. Sharba, Mousa K. Wali, Ali H. Al-Timemy (2020) Wavelet-based feature extraction technique for classification of different shoulder girdle motions for high-level upper limb amputees. Int J Med Eng Informatics 12(6):609–619.

  • Gillian N (2016) Gesture Recognition Toolkit (GRT). Available: http://www.nickgillian.com/wiki/pmwiki.php/GRT/KNN.

  • Giorgio A et al (2020) Improving ECG signal denoising using wavelet transform for the prediction of malignant arrhythmias. Int J Med Eng Informatics 12(2):135–150.

  • Goldberger A, Amaral L, Glass L (2000) Hausdorff, “Components of a New Research Resource for Complex Physiologic Signals.” PhysioBank PhysioToolkit PhysioNet 101(23):215–220

    Google Scholar 

  • Gupta V, Mittal M (2020b) Efficient R-peak detection in electrocardiogram signal based on features extracted using Hilbert Transform and Burg Method. J Inst Eng India Ser b. https://doi.org/10.1007/s40031-020-00423-2

    Article  Google Scholar 

  • Gupta V et al (2019) Auto-regressive Time Frequency Analysis (ARTFA) of Electrocardiogram (ECG) signal. Int J Appl Eng Res 13(6):133–138

    Google Scholar 

  • Gupta V et al (2020a) R-peak detection based chaos analysis of ECG signal. Analog Integr Circ Sig Process 102:479–490

    Article  Google Scholar 

  • Gupta V, Mittal M, Mittal V (2020b) Chaos theory: an emerging tool for arrhythmia detection. Sensing Imaging 21(10):1–22. https://doi.org/10.1007/s11220-020-0272-9

    Article  Google Scholar 

  • Gupta V et al (2020c) Performance evaluation of various pre-processing techniques for R-peak detection in ECG signal. IETE J Res. https://doi.org/10.1080/03772063.2020.1756473

    Article  Google Scholar 

  • Gupta V, Mittal M, Mittal V et al (2021a) BP Signal analysis using emerging techniques and its validation using ECG signal. Sens Imaging 22:25. https://doi.org/10.1007/s11220-021-00349-z

    Article  Google Scholar 

  • Gupta V, Mittal M, Mittal V et al (2021b) A critical review of feature extraction techniques for ECG signal analysis. J Inst Eng India Ser B 102:1049–1060. https://doi.org/10.1007/s40031-021-00606-5

    Article  Google Scholar 

  • Gupta V, Mittal M, Mittal V et al (2021c) A novel feature extraction-based ECG signal analysis. J Inst Eng India Ser B 102:903–913. https://doi.org/10.1007/s40031-021-00591-9

    Article  Google Scholar 

  • Gupta V, Mittal M, Mittal V (2021d) Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wireless Pers Commun 118:3615–3646. https://doi.org/10.1007/s11277-021-08411-5

    Article  Google Scholar 

  • Gupta V, Mittal M, Mittal V et al (2021e) Detection of R-peaks using fractional Fourier transform and principal component analysis. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03484-3

    Article  Google Scholar 

  • Gupta V, Mittal M, Mittal V (2021f) An efficient low computational cost method of R-Peak detection. Wireless Pers Commun 118:359–381. https://doi.org/10.1007/s11277-020-08017-3

    Article  Google Scholar 

  • Gupta V, Mittal M, Mittal V (2021g) A novel FrWT based arrhythmia detection in ECG signal usingYWARA and PCA. Wireless Pers Commun. https://doi.org/10.1007/s11277-021-09403-1

    Article  Google Scholar 

  • Gupta V, Mittal M (2015) Principal component analysis & factor analysis as an enhanced tool of pattern recognition. Int J Elec Electr Eng Telecoms 1(2):73–78.

  • Gupta V, Mittal M (2018) Blood pressure and ECG signal interpretation using Neural Network. Int J Appl Eng Res 13(6):127–132. ISSN 0973-4562.

  • Gupta V, Mittal M (2019) QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J The Inst Eng (India): Series B. https://doi.org/10.1007/s40031-019-00398-9.

  • Gupta V, Mittal M (2020) Arrhythmia detection in ECG signal using Fractional wavelet transform with Principal Component Analysis. J The Inst Eng (India): Series B . https://doi.org/10.1007/s40031-020-00488-z.

  • Gupta V, Mittal M (2020) A novel method of cardiac arrhythmia detection in electrocardiogram signal. Int J Med Eng Informatics 12(5):489–499. https://doi.org/10.1504/IJMEI.2020.109943

  • Gupta V, Mittal M (2021) R-peak detection for improved analysis in health informatics. Int J Med Eng Informatics 13(3):213–223. https://doi.org/10.1504/IJMEI.2021.114888

  • Gupta V, Mittal M, Mittal V (2021) FrWT-PPCA based R-peak detection for improved management of healthcare system. IETE J Res. https://doi.org/10.1080/03772063.2021.1982412

  • Halder B, Mitra S, Mitra M (2019) Classification of complete myocardial infarction using rule-based rough set method and rough set explorer system. IETE J Res. https://doi.org/10.1080/03772063.2019.1588175.

  • Hamdi S, Abdallah AB, Bedoui MH (2017) Real time QRS complex detection using DFA and regular gramBioMed Eng OnLine 16(1):1–20. https://doi.org/10.1186/s12938-017-0322-2

    Article  Google Scholar 

  • Hammad MA, Ibrahim M, Hadhoud MM (2014) A novel approach for maternal and fetal R-peaks detection. IOSR J VLSI Sig Proc 4(6):84–90.

  • Hanumantha Rao G, Rekha S (2019) A 0.8-V, 55.1-dB DR, 100 Hz low-pass filter with low-power PTAT for bio-medical applications. IETE J Res https://doi.org/10.1080/03772063.2019.1682074.

  • He R, Wang K, Li Q, Yuan Y, Zhao N, Liu Y, Zhang H (2017) A novel method for the detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization .Eurasip J Adv Sig. Processing (online). [Online]. https://doi.org/10.1186/s13634-017-0519-3.

  • Huang JS, Chen BQ, Zeng NY et al (2020) Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02110-y

    Article  Google Scholar 

  • Hussein AF, Hashim SJ, Aziz AFA et al (2017) A real time ECG data compression scheme for enhanced bluetooth low energy ECG system power consumption. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-017-0560-y

    Article  Google Scholar 

  • Jambholkr T, Saini BS, Saini I (2018) An adaptive thresholding technique for QRS-complex detection in ECG signal based on empirical wavelet transform. Inter J Med Eng Infor 10(2):135–149

    Google Scholar 

  • Jangra M et al (2020) ECG arrhythmia classification using modified visual geometry group network (mVGGNet). J Intell Fuzzy Syst 38:3151–3165

    Article  Google Scholar 

  • Jong GJ, Aripriharta, Hendrick et al (2017) Fuzzy inference engine integrated with blood pressure and heart variability for medical web platform. Wireless Personal Commun 92:1695–1712. https://doi.org/10.1007/s11277-016-3629-6.

  • Kaur H, Rajni Rajni (2017) Electrocardiogram signal analysis for R-peak detection and diagnosing with hybrid linearization and principal component analysis. Turk J Elec Eng Comp Sci 25:2163–2175

  • Kaur H, Rajni R (2017) On the detection of cardiac arrhythmia with principal component analysis. Wireless Pers Commun 97:5495–5509. https://doi.org/10.1007/s11277-017-4791-1

    Article  Google Scholar 

  • Kaya Y (2018) Classification of PVC beat in ECG using basic temporal features. Balk J Elect Com Eng 6(2):10–14.

  • Kaya Y, Pehlivan H (2015) Feature selection using genetic algorithms for premature ventricular contraction classification. In: Proc. 9th International Conf. on IEEE Electrical and Electronics Engineering, Turkey, 2015, pp 1229–32.

  • Khaldi S, Dibi Z (2019) Neural network technique for electronic nose based on high sensitivity sensors array. Sens Imaging 20:15. https://doi.org/10.1007/s11220-019-0233-3

    Article  Google Scholar 

  • Kim JS, Kim SH, Pan SB (2020a) Personal recognition using convolutional neural network with ECG coupling image. J Ambient Intell Human Comput 11:1923–1932. https://doi.org/10.1007/s12652-019-01401-3

    Article  Google Scholar 

  • Kim MG, Ko H, Pan SB (2020) A study on user recognition using 2D ECG based on ensemble of deep convolutional neural networks. J Ambient Intell Human Comput 11:1859–1867. https://doi.org/10.1007/s12652-019-01195-4.

  • Klingspor M (2015) Hilbert transform: Mathematical theory and applications to signal processing. Ph.D. dissertation, Matematiska institutionen, Link¨opings universitet, Karlskrona.

  • Kohli SS, Makwana N, Mishra N, Sagar B (2012) Hilbert transform based adaptive ECG R-peak detection technique. Inter J Electr Comp Eng 2(5):639–643

    Google Scholar 

  • Kora P (2017) ECG based myocardial infarction detection using hybrid firefly algorithm. Comp Meth Prog Biomed 152:141–148

    Article  Google Scholar 

  • Kora P, Krishna KSR (2016) ECG based heart arrhythmia detection using wavelet coherence and bat algorithm. Sens Imaging 17(12):1–16

    Google Scholar 

  • Kora P, Krishna KSR (2016) Hybrid firefly and Particle Swarm Optimization algorithm for the detection of Bundle Branch Block. Inter J Cardiov Acad 2(1):44–48

    Article  Google Scholar 

  • Krishna BT (2014) Electrocardiogram signal and linear time–frequency transforms. J Inst Eng India Ser B 95:377–382. https://doi.org/10.1007/s40031-014-0097-9

    Article  Google Scholar 

  • Krishnamoorthy S, Dua A, Gupta S (2021) Role of emerging technologies in future IoT-driven Healthcare 4.0 technologies: a survey, current challenges and future directions. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03302-w

    Article  Google Scholar 

  • Leelavathy J, Selva Brunda S (2020) A cloud-based secured framework for smart medical diagnosis: a survey. Int J Med Eng Informatics 12(6):581–590.

  • Li Y (2014) Heartbeat detection, classification and coupling analysis using electrocardiography Data. PhD dissertation, Dept. Elect. Eng. & Comp. Sci., Case Western Reserve University.

  • Lin PY (1999) The Fractional Fourier Transform and Its Applications. National Taiwan University.

  • Lin CF, Lin TX, Lin CI et al (2019) A mobile cloud-based health promotion system for cardiovascular diseases. Wireless Personal Commun 108:2179–2193. https://doi.org/10.1007/s11277-019-06516-6

    Article  Google Scholar 

  • Lin C, Yeh CH, Wang CY, Shi W, Serafico BMF, Wang CH, Juan CH, Young HWV, Lin YJ, Yeh HM, Lo MT (2018) Robust fetal heart beat detection via R-peak intervals distribution. Trans. Biomed Eng, pp 1–10. https://doi.org/10.1109/TBME.2019.2904014.

  • Liu Y, Tan Y, Xie H, Wang W, Gao Z (2014) Time-frequency analysis of non-stationary electrocardiogram signals using Hilbert-Huang Transform. J Rev Sci Instr 85:073502–073507

    Article  Google Scholar 

  • Luz EJS, Schwartz WR, Chávez GC, Menotti D (2016) ECG-based heartbeat classification for arrhythmia detection: a survey. Comp Met Prog Biom 127:144–164

    Article  Google Scholar 

  • Majumder S, Shaw AK, Sarkar SK (2016) Hardware implementation of singular value decomposition. J Inst Eng India Ser B 97:227–231. https://doi.org/10.1007/s40031-014-0158-0

    Article  Google Scholar 

  • Malleswari PN, Bindu CH, Prasad KS (2021) A hybrid EMD-DWT based algorithm for detection of QRS complex in electrocardiogram signal. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03268-9

    Article  Google Scholar 

  • Marinho LB, Nascimento NMM, Souza JWM, Gurgel MV, Filho PPR, de Albuquerque VHC (2019) A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Fut Gen Comp Syst 97:564–577

    Article  Google Scholar 

  • Marouf M, Saranovac L, Vukomanovic G (2017) Algorithm for EMG noise level approximation in ECG signals. Biom Sig Proc Cont 34:158–165

    Article  Google Scholar 

  • Mehta SS, Lingayat NS (2007a) Development of entropy based algorithm for cardiac beat detection in 12-lead electrocardiogram. Sig Proc 87:3190–3201

    Article  MATH  Google Scholar 

  • Mehta SS, Lingayat NS (2007b) Support vector machine for cardiac beat detection in single lead electrocardiogram. IAENG Inter J Appl Math 36(2):1–7

    MathSciNet  MATH  Google Scholar 

  • Mehta SS, Lingayat NS (2008a) Development of SVM based ECG pattern recognition technique. IETE J Res 54(1):5–11

    Article  Google Scholar 

  • Mehta SS, Lingayat NS (2008b) SVM-based algorithm for recognition of QRS complexes in electrocardiogram. IRBM 29:310–317

    Article  Google Scholar 

  • Mehta SS, Lingayat NS (2008c) Development of SVM based ECG pattern recognition technique. IETE J Res 54(1):5–11

    Article  Google Scholar 

  • Mehta SS, Lingayat NS (2008d) Development of SVM based classification techniques for the delineation of wave components in 12-lead electrocardiogram. Biom Sig Proc Cont 3(4):341–349

    Article  Google Scholar 

  • Mehta SS, Lingayat NS (2009) Application of support vector machine for the detection of P- and T-waves in 12-lead electrocardiogram. Comp Meth Prog Biomed 93:46–60

    Article  Google Scholar 

  • Mia MR, Roy S, Das SK et al (2020) Mango leaf disease recognition using neural network and support vector machine. Iran J Comput Sci 3:185–193

    Article  Google Scholar 

  • Mian Qaisar S, Hussain SF (2021) An effective arrhythmia classification via ECG signal subsampling and mutual information based subbands statistical features selection. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03275-w.

  • Mohanty M, Basu M, Pattanayak DN et al (2018) A simple network to remove interference in surface EMG signal from single gene affected phenylketonuria patients for proper diagnosis. J Inst Eng India Ser B 99:109–123. https://doi.org/10.1007/s40031-017-0301-9

    Article  Google Scholar 

  • Mortezaee M et al (2019) An improved SSA-based technique for EMG removal from ECG. IRBM 40:62–68

    Article  Google Scholar 

  • Mostafi M et al (2019) Discrimination of signals phonocardiograms by using SNR report. Int J Med Eng Informatics (IJMEI) 11(4):386–403

    Article  Google Scholar 

  • Mredhula L, Dorairangaswamy MA (2017) An effective image denoising using PPCA and classification of CT images using artificial neural networks. Int J Med Eng Informatics 9(1):30–46

    Article  Google Scholar 

  • Mukherjee S et al (2020) Malignant melanoma detection using multi layer preception with visually imperceptible features and PCA components from Med-Node dataset. Int J Med Eng Informatics (IJMEI) 12(2):151–168

    Article  Google Scholar 

  • Narina A, Isler Y, Ozer M (2014) Investigating the performance improvement of HRV Indices in CHF using feature selection methods based on backward elimination and statistical significance. Comp Biol Med 45:72–79

    Article  Google Scholar 

  • Nishad A, Pachori RB, Acharya UR (2018) Application of TQWT based filter-bank for sleep apnea screening using ECG signals. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-018-0867-3

    Article  Google Scholar 

  • Nivaashini Mathappan, Soundariya RS, Aravindhraj Natarajan, Sathish Kumar Gopalan (2020) Bio-medical analysis of breast cancer risk detection based on deep neural network. Int J Med Eng Informatics 12(6):529–541.

  • Oh SL, Ng EYK, Tan RS, Acharya UR (2018) Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comp Biol Med 102:278–287

    Article  Google Scholar 

  • Padmavathi K, Ramakrishna KS (2015) Detection of atrial fibrillation using continuous wavelet transform and wavelet coherence. Int J Systems Control Commun 6(4):292–304.

  • Pahim O, Sornmo L (1984) Software QRS detection in ambulatory monitoring-a review. J Med Biol Eng Comp 22(4):289–297

    Article  Google Scholar 

  • Pandia Rajan Jeyaraj, Edward Rajan Samuel Nadar (2019) Smart-monitor: patient monitoring system for IoT-based healthcare system using deep learning. IETE J Res. https://doi.org/10.1080/03772063.2019.1649215

  • Pankaj Nanglia, Aparna N. Mahajan, Davinder S. Rathee, Sumit Kumar (2020) Lung cancer classification using feed forward back propagation neural network for CT images. Int J Med Eng Informatics 12(5):447–456.

  • Peng ZK, Tse PW, Chu FL (2005) A comparison study of improved Hilbert-Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech Syst Sig pro 19(5):974–988

    Article  Google Scholar 

  • Pham TH, Sree V, Mapes J et al (2021) A novel machine learning framework for automated detection of arrhythmias in ECG segments. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02779-1

    Article  Google Scholar 

  • Pierleoni P, Belli A, Gentili A et al (2021) Real-time smart monitoring system for atrial fibrillation pathology. J Ambient Intell Human Comput 12:4461–4469. https://doi.org/10.1007/s12652-019-01602-w

    Article  Google Scholar 

  • Poornachandra S, Kumaravel N (2008) A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Dig Sig pro 18(2):116–126

    Article  Google Scholar 

  • Preethi D, Valarmathi RS (2019) A novel classification and synchronous noise removal during fetal heart rate monitoring. IETE J Res. https://doi.org/10.1080/03772063.2019.1567276

    Article  Google Scholar 

  • Priyadharsini NK, Chitra D (2021) A kernel support vector machine based anomaly detection using spatiotemporal motion pattern models in extremely crowded scenes. J Ambient Intell Human Comput 12:5225–5234. https://doi.org/10.1007/s12652-020-02000-3

    Article  Google Scholar 

  • Qidwai U, Chaudhry J, Jabbar S et al (2019) Using casual reasoning for anomaly detection among ECG live data streams in ubiquitous healthcare monitoring systems. J Ambient Intell Human Comput 10:4085–4097. https://doi.org/10.1007/s12652-018-1091-x

    Article  Google Scholar 

  • Rabbani H, Parsa Mahjoob M, Farahabadi E, Farahabadi A (2011) R peak detection in electrocardiogram signal based on an optimal combination of wavelet transform, Hilbert transform, and adaptive thresholding. J Med Signals Sens 1(2):91–98.

  • Rahman MA, Milu MMH, Anjum A et al (2019) A statistical designing approach to MATLAB based functions for the ECG signal preprocessing. Iran J Comput Sci 2:167–178

    Article  Google Scholar 

  • Rai HM, Chatterjee K (2018a) A novel adaptive feature extraction for detection of cardiac arrhythmias using hybrid technique MRDWT & MPNN classifier from ECG big data, big data research, vol. 12, pp 13–22. ISSN 2214-5796. https://doi.org/10.1016/j.bdr.2018.02.003.

  • Rai HM, Chatterjee K (2018b) A unique feature extraction using MRDWT for automatic classification of abnormal heartbeat from ECG big data with multilayered probabilistic neural network classifier. Appl Soft Comput 72:596–608. ISSN 1568-4946. https://doi.org/10.1016/j.asoc.2018.04.005.

  • Rai HM, Chatterjee K (2021) Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data. Appl Intell. https://doi.org/10.1007/s10489-021-02696-6

    Article  Google Scholar 

  • Rai HM, Trivedi A, Chatterjee K, Shukla S (2014) R-Peak Detection using Daubechies Wavelet and ECG signal classification using radial basis function neural network. J Inst Eng India Ser B 95(1):63–71

    Article  Google Scholar 

  • Hari Mohan Rai, Anurag Trivedi, Shailja Shukla (2013) ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier, Measurement, Volume 46, Issue 9, 2013, pp 3238–3246. ISSN 0263-2241. https://doi.org/10.1016/j.measurement.2013.05.021.

  • Rai HM, Chatterjee K, Mukherjee C (2020) Hybrid CNN-LSTM model for automatic prediction of cardiac arrhythmias from ECG big data. In: 2020 IEEE 7th Uttar Pradesh section international conference on electrical, electronics and computer engineering (UPCON). https://doi.org/10.1109/upcon50219.2020.9376450

  • Rajagopal R, Ranganathan V (2017) Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification. Biom Sig Proc Cont 34:1–8

    Article  Google Scholar 

  • Rajesh KNVPS, Dhuli R (2017) Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine. Comp Biol Med 87:271–284

    Article  Google Scholar 

  • Ratto CR, Morton KD, Collins LM et al (2014) Analysis of linear prediction for soil characterization in GPR data for countermine applications. Sens Imaging 15:86. https://doi.org/10.1007/s11220-014-0086-8

    Article  Google Scholar 

  • Rehman BK, Kumar A, Sharma P (2016) A novel approach for R-Peak Detection in the Electrocardiogram (ECG) signal. ARPN J Eng Appl Sci 11(21).

  • Rooijakkers MJ, Rabotti C, Oei SG, Mischi M (2012) Low complexity R-peak detection for ambulatory fetal monitoring. Physiol Meas 33(7):1135–1150

    Article  Google Scholar 

  • Saadatmand-Tarzjan M, Rashidi N, Iqbal M (2019) A novel parametric deformable model based on calculus of variations for QRS detection. Iran J Sci Technol Trans Sci 43(3):1101–1107

    Article  Google Scholar 

  • Sabherwal P, Agrawal M, Singh L (2017) Automatic detection of the R peaks in single-lead ECG signal. J Circuits Syst Signal Process 36:4637–4652

    Article  Google Scholar 

  • Sadhukhan D, Mitra M (2012) R-peak detection algorithm for ECG using double difference and RR interval processing. J Procedia Technology 4:873–877

    Article  Google Scholar 

  • Sadhukhan D, Mitra M (2012) R-peak detection algorithm for ECG using double difference and RR interval processing. Proc Tech 4:873–877

    Article  Google Scholar 

  • Saed Tarapiah, Motaz Daadoo, Shadi Atalla (2017) Android-based real-time healthcare system. Int J Med Eng Informatics 9(3):253–268

  • Sageena G, Sharma M, Kapur A (2021) Evolution of smart healthcare: telemedicine during COVID-19 Pandemic. J Inst Eng India Ser B. https://doi.org/10.1007/s40031-021-00568-8

    Article  Google Scholar 

  • Sahoo S et al (2019) Machine learning approach to detect cardiac arrhythmias in ECG signals: a survey. IRBM. https://doi.org/10.1016/j.irbm.2019.12.001

    Article  Google Scholar 

  • Sahoo S, Kanungo B, Behera S, Sabut S (2017) Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Meas 108:55–66

    Article  Google Scholar 

  • Sahu Barnali, Dehuri Satchidananda, Jagadev Alok Kumar (2019) Adaptive improved binary PSO-based learnable Bayesian classifier for dimensionality reduced microarray data. Int J Med Eng Informatics 11(3):265–285

  • Saini I, Singh D, Khosla A (2013) P- and T-wave delineation in ECG Signals using support vector machine. IETE J Res 59(5):615–623

    Article  Google Scholar 

  • Saini I, Singh D, Khosla A (Jan. 2013) Detection of QRS-complex using K-nearest neighbour algorithm. Int J Medical Engineering and Informatics 5(1):81–101

    Article  Google Scholar 

  • Saini I, Kumar V, Khosla A (2013a) Feature extraction of ECG signal using a support vector machine. J Electrocar 46(4):1–37

    Article  Google Scholar 

  • Saini I, Singh D, Khosla A (2013b) QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases. J Adv Res 4(4):331–344

    Article  Google Scholar 

  • Saini I, Singh D, Khosla A (2014a) Electrocardiogram beat classification using empirical mode decomposition and multiclass directed acyclic graph support vector machine. Comput Electr Eng 40(5):1774–1787

    Article  Google Scholar 

  • Saini I, Singh D, Khosla A (2014b) Electrocardiogram beat classification using empirical mode decomposition and multiclass directed acyclic graph support vector machine. Comput Electr Eng 40(5):1774–1787

    Article  Google Scholar 

  • Saini I, Singh D, Khosla A (2014) P- and T-wave delineation in ECG signals using support vector machine. IETE J Res 59(5):615–623

    Article  Google Scholar 

  • Saini I, Singh D, Khosla A (2014) K-nearest neighbour-based algorithm for P- and T-waves detection and delineation. J Med Eng Technol 38(3):115–124.

  • Salem A, Ushijima K, Gamey TJ et al (2001) Automatic detection of UXO from airborne magnetic data using a neural network. Subsurf Sens Technol Appl 2:191–213. https://doi.org/10.1023/A:1011918119491

    Article  Google Scholar 

  • Sandeep Kumar Satapathy, Satchidananda Dehuri, Alok Kumar Jagadev (2018) SMOTE and ABC optimised RBF network for coping with imbalanced class in EEG signal classification. Int J Med Eng Informatics 10(3):215–234

  • Santanu Sahoo, Priti Das, Prativa Biswal, Sukanta Sabut (2018) Classification of heart rhythm disorders using instructive features and artificial neural networks. Int J Med Eng Informatics 10(4):359–381

  • Sarma Dhulipala VR, Kanagachidambaresan GR (2014) Cardiac care assistance using self configured sensor network—a remote patient monitoring system. J Inst Eng India Ser B 95:101–106. https://doi.org/10.1007/s40031-014-0084-1

  • Sasikala P, Wahidabanu RSD (2010) Robust R Peak and QRS detection in electrocardiogram using wavelet transform. Inter J Adv Comp Sci Appl 1(6):48–53

    Google Scholar 

  • Savalia S, Acosta E, Emamian V (2017) classification of cardiovascular disease using feature extraction and artificial neural networks. J Biosci Med 5(11):64–79

    Google Scholar 

  • Schrauwen B, D’Haene M, Verstraeten D, Van Campenhout J (2008) Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Netw 21(3):511–523

    Article  Google Scholar 

  • Sepideh Hatamikia, Ali Motie Nasrabadi (2017) Recognition of emotional states in response to audio-visual inductions based on nonlinear analysis and self-organisation map classification. Int J Med Eng Informatics 9(2):110–133

  • Sharma T, Sharma KK (2016) QRS Complex detection in ECG Signals Using the Synchrosqueezed Wavelet Transform. IETE J Res 62(6):885–892

    Article  Google Scholar 

  • Sheetal A, Singh H, Kaur A (2019) QRS detection of ECG signal using hybrid derivative and MaMeMi filter by effectively eliminating the baseline wander. Analog Integr Circ Sig Process 98:1–9. https://doi.org/10.1007/s10470-018-1249-7

    Article  Google Scholar 

  • Singh O, Sunkaria RK (2011) A Robust R-peak detection algorithm using wavelet packets. Int J Com App 36:37–43

    Google Scholar 

  • Singh RS, Saini BS, Sunkaria RK (2019) Arrhythmia detection based on time–frequency features of heart rate variability and back-propagation neural network. Iran J Comput Sci 2:245–257

    Article  Google Scholar 

  • Sivasankar E, Pradeep R, Sivanandham S (2019) Identification of important biomarkers for detection of chronic kidney disease using feature selection and classification algorithms. Int J Med Eng Informatics 11(4):368–385

    Article  Google Scholar 

  • Slimane ZEH, Ali AN (2010) QRS complex detection using empirical mode decomposition. Dig Sig Proc 20(4):1221–1228

    Article  Google Scholar 

  • Smita Jhajharia, Seema Verma, Rajesh Kumar (2020) An amalgamated prediction model for breast cancer detection using fuzzy features. Int J Med Eng Informatics (IJMEI), Vol. 12, No. 4.

  • Sood SK, Mahajan I (2018) A Fog assisted cyber-physical framework for identifying and preventing coronary heart disease. Wireless Personal Commun 101:143–165. https://doi.org/10.1007/s11277-018-5680-y

    Article  Google Scholar 

  • Soorma N, Singh J, Tiwari M (2014) Feature extraction of ECG signal using HHT algorithm. Int J Eng Trends and Tech 8(8):454–460

    Article  Google Scholar 

  • Sridhar C, Lih OS, Jahmunah V et al (2021) Accurate detection of myocardial infarction using non linear features with ECG signals. J Ambient Intell Human Comput 12:3227–3244. https://doi.org/10.1007/s12652-020-02536-4

    Article  Google Scholar 

  • Subasi A, Dogan S, Tuncer T (2021) A novel automated tower graph based ECG signal classification method with hexadecimal local adaptive binary pattern and deep learning. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03324-4

    Article  Google Scholar 

  • Subrahmanyam V, Zubair MA, Kumar A et al (2018) A low power minimal error IEEE 802.15.4 Transceiver for Heart Monitoring in IoT applications. Wireless Personal Commun 100:611–629. https://doi.org/10.1007/s11277-018-5255-y.

  • Swapnarekha H, Behera HS, Roy D et al (2021) Competitive deep learning methods for COVID-19 detection using X-ray Images. J Inst Eng India Ser B. https://doi.org/10.1007/s40031-021-00589-3

    Article  Google Scholar 

  • Theodore Kotsilieris, Emmanuel Pintelas, Ioannis E. Livieris, Panagiotis Pintelas (2020) Predicting anxiety disorders and suicide tendency using machine learning: a review. Int J Med Eng Informatics 12(6):599–608.

  • Tripathy RK, Bhattacharyya A, Pachori RB (2019) Localization of myocardial infarction from multi-lead ECG signals using multiscale analysis and convolutional neural network. IEEE Sens Jou. https://doi.org/10.1109/JSEN.2019.2935552

    Article  Google Scholar 

  • Tuncer T, Dogan S, Pławiak P, Acharya UR (2019) Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals.Know Bas Syst, 186. https://doi.org/10.1016/j.knosys.2019.104923.

  • Vasantha Kavitha, Hanumanthappa M (2020) Predicting oral squamous cell carcinoma in tobacco users by utilising fuzzy-based decision tree algorithm. Int J Med Eng Informatics 12(5):435–446.

  • Viknesh V, Prashanth PR (2013) Matlab implementation of ECG signal processing. IOSR J VLSI and Sig Proc 3(1):40–47

    Google Scholar 

  • Vishwanath B, Pujeri RV, Devanagavi G (2019) Probabilistic principal component analysis-based dimensionality reduction and optimization for arrhythmia classification using ECG signals. Bio-Algorithms Med-Syst 15(1):1–18

    Google Scholar 

  • Xiang Y, Lin Z, Meng J (2018) Automatic QRS complex detection using two-level convolutional neural network. BioMed Eng OnLine 17(1):1–17

    Article  Google Scholar 

  • Yashvantrai Vyas B, Maheshwari RP, Das B (2016) Pattern recognition application of support vector machine for fault classification of thyristor controlled series compensated transmission lines. J Inst Eng India Ser B 97:175–183. https://doi.org/10.1007/s40031-015-0210-8

    Article  Google Scholar 

  • Zhou S, Tan B (2019) Electrocardiogram soft computing using hybrid deep learning CNN-ELM. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2019.105778

    Article  Google Scholar 

  • Zidelmal Z, Amirou A, Adnane M, Belouchrani A (2012) QRS detection based on wavelet coefficients. J Comp Meth pro Bi 107(3):490–496

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All simulations and methodology are performed by Varun Gupta. Literature survey is jointly done by all authors.

Corresponding author

Correspondence to Varun Gupta.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

All authors ensure the ethical approval.

Consent to Participate

All authors have the consent to participate.

Consent to Publish

All authors have the consent to publish the paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Saxena, N.K., Kanungo, A. et al. A review of different ECG classification/detection techniques for improved medical applications. Int J Syst Assur Eng Manag 13, 1037–1051 (2022). https://doi.org/10.1007/s13198-021-01548-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-021-01548-3

Keywords

Navigation