Skip to main content
Log in

Optimization of a periodically assessing model with manageable lead time under SLC with back order rebate for deteriorating items

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

The study deals with periodic inventory model, wherein for deteriorating items back-order price rebate can be given to the end customer. Here under the service category constraint, the paper examines manageable lead time. Deterioration can take the form of decay, spoilage, damage, obsolescence and loss of original value of the product. The service level constraints have been defined as the expected demand shortages at the end of the cycle for a given safety factor divided by quantity available for satisfying the demand per cycle. The paper attempts to calculate the overall cost reduction in sourcing the products if the lead time in procurement is crashed component wise. This crashing cost is considered as a linear function and has been dealt with under two cases, viz, case (1) demand-distribution is known (approach of Gaussian-distribution); case (2) demand-distribution is un-known (approach of mini-max-distribution). An algorithm which jointly-optimises backorder-price-rebate, review-period and lead-time under the known service level for deteriorating-items has been developed. The basic assumption in the above calculations is that shortages are partially backlogged. The results show that considerable savings could be accomplished with manageable lead time, which can be passed on to the customers in the form of rebate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SLC:

Service level constraints

JIT:

Just in time

OC:

Ordering cost

HC:

Holding cost

LTCC:

Lead time crashing cost

DC:

Decay cost

SL:

Service level

KT:

Kuhn–Tucker

CAE:

Cost annual expected

TEAC:

Total-expected-annual-cost

References

  • Aardal K, Jonsson O, Jonsson H (1989) Optimal inventory policies with service level constraints. J Oper Res Soc 40(1):65–73

    Article  MATH  Google Scholar 

  • Alrasheedi AF, Alnowibet KA, Alotaibi IT (2022) Stochastic review inventory systems with deteriorating items; a steady-state non-linear approach. Processes 10:781

    Article  Google Scholar 

  • Annadurai K, Uthayakumar R (2010a) Reducing lost-sales rate in (T, R, L) inventory model with controllable lead time. Appl Math Model 34:3465–3477

    Article  MATH  Google Scholar 

  • Annadurai K, Uthayakumar R (2010b) Ordering cost reduction in probabilistic inventory model with controllable lead time and a service level. Int J Manag Sci Eng Manag 5(6):403–410

    MATH  Google Scholar 

  • Arkan A, Hejazi SR (2012) Coordinating orders in a two echelon supply chain with controllable lead time and ordering cost using the credit period. Comput Ind Eng 62:56–69

    Article  Google Scholar 

  • Ben-Daya M, Hariga M (1999) Some stochastic inventory models with deterministic variable lead time. Eur J Oper Res 113:42–51

    Article  MATH  Google Scholar 

  • Ben-Daya M, Hariga M (2003) Lead-time reduction in a stochastic inventory system with learning consideration. Int J Prod Res 41:571–579

    Article  MATH  Google Scholar 

  • Bhunia S, Pareek S, Sarkar B (2021) A supply chain model with service level constraints and strategies under uncertainty. Alex Eng J 60(6):6035–6052

    Article  Google Scholar 

  • Braglia M, Castellano D, Frosolini M (2016) A novel approach to safety stock management in a coordinated supply chain with controllable lead time using present value. Appl Stoch Model Bus Ind 32:99–112

    Article  MATH  Google Scholar 

  • Braglia M, Castellano D, Song D (2017) Distribution-free approach for stochastic joint-replenishment problem with backorders-lost sales mixtures and controllable major ordering cost and lead times. Comput Oper Res 79:161–173

    Article  MATH  Google Scholar 

  • Chandra C, Grabis J (2008) Inventory management with variable lead-time dependent procurement cost. Omega 36:877–887

    Article  Google Scholar 

  • Chang H-C, Ouyang L-Y, Wu K-S, Ho C-H (2006) Integrated vendor-buyer cooperative inventory models with controllable lead time and ordering cost reduction. Eur J Oper Res 170:481–495

    Article  MATH  Google Scholar 

  • Chen CK, Chang HC, Ouyang LY (2001) A continuous review inventory model with ordering cost dependent on lead time. Int J Inf Manag Sci 12(3):1–13

    MATH  Google Scholar 

  • Cheng CT, Teng JT, Goyal SK (2009) Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. Int J Prod Econ 123:62–68

    Article  Google Scholar 

  • Chern MS, Yang HL, Teng JT, Papachristos S (2008) Partial backlogging inventory lot-size models for deteriorating items with fluctuating demand under inflation. Eur J Oper Res 191:127–141

    Article  MATH  Google Scholar 

  • Chu P, Yang KL, Chen PS (2005) Improved inventory models with service level and lead time. Comput Oper Res 32:285–296

    Article  MATH  Google Scholar 

  • Chuang BR, Ouyang LY, Lin YJ (2004a) A minimax distribution free procedure for mixed inventory model with backorder discounts and variable lead time. J Stat Manag Syst 7(1):65–76

    MATH  Google Scholar 

  • Chuang BR, Ouyang LY, Chuang KW (2004b) A note on periodic review inventory model with controllable setup cost and lead time. Comput Oper Res 31:549–561

    Article  MATH  Google Scholar 

  • Dey O, Khan WF (2021) A fuzzy random periodic review mixture inventory model with backorder price discount. Int J Oper Res 1(1):1

    Article  Google Scholar 

  • Dey BK, Bhunia S, Sarkar B (2021) Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management. Expert Syst Appl Int J 184(3):115464

    Article  Google Scholar 

  • Dye CY, Hsieh TP, Ouyang LY (2007a) Determining optimal selling price and lot size with a varying rate of deterioration and exponential partial backlogging. Eur J Oper Res 181:668–678

    Article  MATH  Google Scholar 

  • Dye CY, Ouyang LY, Hsieh TP (2007b) Inventory and pricing strategies for deteriorating items with shortages: a discounted cash flow approach. Comput Ind Eng 52:29–40

    Article  Google Scholar 

  • Gallego G, Moon I (1993) The distribution free newsboy problem: review and extensions. J Oper Res Soc 44:825–834

    Article  MATH  Google Scholar 

  • Gautam P, Maheshwari S, Kausar A, Jaggi CK (2021) Inventory models for imperfect quality items: a two-decade review. In: Kapur PK, Singh G, Panwar S (eds) Advances in interdisciplinary research in engineering and business management. Asset analytics. Springer, Singapore

    Google Scholar 

  • Ghare PM, Schrader GF (1963) A model for exponentially decaying inventories. J Ind Eng 14:234–238

    Google Scholar 

  • Gholami A, Mirzazadeh A (2018) An inventory model with controllable lead time and ordering cost, log-normal-distributed demand and gamma-distributed available capacity. Cogent Bus Manag 5(1):1469182

    Article  Google Scholar 

  • Gholami-Qadikolaei A, Mirzazadeh A, Tavakkoli- Moghaddam R (2015) Lead time and ordering cost reductions in budget and space restricted probabilistic inventory models with imperfect items. RAIRO Oper Res 49:215–242

    Article  MATH  Google Scholar 

  • Glock CH, Grosse EH (2021) The impact of controllable production rates on the performance of inventory systems: a systematic review of the literature. Eur J Oper Res 288:703–720

    Article  MATH  Google Scholar 

  • Goyal SK, Giri BC (2001) Recent trends in modelling of deteriorating inventory. Eur J Oper Res 134:1–16

    Article  MATH  Google Scholar 

  • Goyal SK, Giri BC (2003) The production–inventory problem of a product with time varying demand, production and deterioration rates. Eur J Oper Res 147:549–557

    Article  MATH  Google Scholar 

  • Gutgutia A, Jha JK (2018) A closed-form solution for the distribution free continuous review integrated inventory model. Oper Res Int J 18(1):159–186

    Article  Google Scholar 

  • Ho CH (2009) A minimax distribution free procedure for an integrated inventory model with defective goods and stochastic lead time demand. Int J Inf Sci 20(1):161–171

    MATH  Google Scholar 

  • Jaggi CK, Arneja N (2010) Periodic inventory model with unstable lead-time and setup cost with backorder discount. Int J Appl Decis Sci 3(1):53–57

    Google Scholar 

  • Jaggi CK, Ali H, Arneja N (2013) Periodic review inventory model with controllable lead time under service level constraint where back order rate depends on protection interval. Int J Inventory Control Manag 3(1):303–327

    Article  Google Scholar 

  • Jaggi CK, Ali H, Arneja N (2014) Periodic inventory model with controllable lead time where back order rate depends on protection interval. Int J Ind Eng Comput 5(2):235–248

    Google Scholar 

  • Jauhari WA (2014) Lot size decisions for vendor-buyer system with quantity discount, partial backorder and stochastic demand. Adv Oper Res 15:1–7

    MATH  Google Scholar 

  • Jha JK, Shanker K (2009a) Two-echelon supply chain inventory model with controllable lead time and service level constraint. Comput Ind Eng 57:1096–1104

    Article  Google Scholar 

  • Jha JK, Shanker K (2009b) A single–vendor single-buyer production-inventory model with controllable lead time and service level constraint for decaying items. Int J Prod Res 47(24):6875–6898

    Article  MATH  Google Scholar 

  • Khan I, Jemai J, Lim H, Sarkar B (2019) Effect of electrical energy on the manufacturing setup cost reduction, transportation discounts, and process quality improvement in a two-Echelon supply chain management under a service-level constraint. Energies 12(19):3733

    Article  Google Scholar 

  • Khanlarzade N, Yegane BY, Kamalabadi IN, Farughi H (2014) Inventory control with deteriorating items: a state-of-the-art literature review. Int J Ind Eng Comput 5:179–198

    Google Scholar 

  • Kim SJ, Sarkar B, Sarkar S (2018) An inventory model with backorder price discount and stochastic lead time. DJ J Eng Appl Math 4(2):34–48

    Article  Google Scholar 

  • Kumar S, Kumar N (2016) An inventory model for deteriorating items under inflation and permissible delay in payments by genetic algorithm. Cogent Bus Manag 3(1):1239605

    Article  Google Scholar 

  • Lee WC, Wu JW, Hou WB (2004) A note on inventory model involving variable lead time with defective units for mixtures of distribution. Int J Prod Econ 89(1):31–44

    Article  Google Scholar 

  • Lee WC, Wu JW, Hsu JW (2006) Computational algorithm for inventory model with a service level constraint, lead time demand with the mixture of distributions and controllable negative exponential backorder rate. Appl Math Comput 175:1125–1138

    MATH  Google Scholar 

  • Lee WC, Wu JW, Lei CL (2007) Computational algorithmic procedure for optimal inventory policy involving ordering cost reduction and back order discounts when lead time demand is controllable. Appl Math Comput 189(1):186–200

    MATH  Google Scholar 

  • Li R, Lan H, Mawhinney JR (2010) A review on deteriorating inventory study. J Serv Manag 3:117–129

    Google Scholar 

  • Liang SK, Chu P, Yang KL (2008) Improved periodic review inventory model involving lead-time with crashing components and service level. Int J Syst Sci 39(4):421–426

    Article  MATH  Google Scholar 

  • Liao C-J, Shyu C-H (1991) An analytical determination of lead time with normal demand. Int J Oper Prod Manag 11:72–78

    Article  Google Scholar 

  • Lin YJ (2008) Minimax distribution free procedure with backorder price discount. Int J Prod Econ 111:118–128

    Article  Google Scholar 

  • Lin YJ (2010) A stochastic periodic review integrated inventory model involving defective items, backorder price discount, and variable lead time. 4OR 8:281–297

    Article  MATH  Google Scholar 

  • Lodree EJ Jr, Uzokhukwu BM (2008) Production planning for a deteriorating item with stochastic demand and consumer choice. Int J Prod Econ 116:219–232

    Article  Google Scholar 

  • Malik AI, Sarkar B (2018) A distribution-free model with variable setup cost, backorder price discount and controllable lead time. DJ J Eng Appl Math 4(2):58–69

    Article  Google Scholar 

  • Malik AI, Sarkar B (2020) Coordination supply chain management under flexible manufacturing stochastic lead time demand and mixture of inventory. Mathematics 8:911

    Article  Google Scholar 

  • Masae M, Glock CH, Grosse EH (2019) Order picker routing in warehouses: a systematic literature review. Int J Prod Econ 224:107564

    Article  Google Scholar 

  • Montgomery DC, Bazaraa MS, Keswani AI (1973) Inventory models with a mixture of backorders and lost sales. Nav Res Logist 20:255–263

    Article  MATH  Google Scholar 

  • Moon I, Choi S (1994) The distribution free continuous review inventory system with a service level constraint. Comput Ind Eng 27(1–4):209–212

    Article  Google Scholar 

  • Moon I, Choi S (1998) Note on lead time and distributional assumptions in continuous review inventory models. Comput Oper Res 25:1007–1012

    Article  MATH  Google Scholar 

  • Moon I, Gallego G (1994) Distribution free procedures for some inventory models. J Oper Res Soc 45:651–658

    Article  MATH  Google Scholar 

  • Moon I, Shin E, Sarkar B (2014) Min-max distribution free continuous-review model with a service level constraint and variable lead time. Appl Math Comput 229:310–315

    MATH  Google Scholar 

  • Mukhopadhyay S, Mukherjee RN, Chaudhuri KS (2004) Joint pricing and ordering policy for a deteriorating inventory. Comput Ind Eng 47(4):339–349

    Article  Google Scholar 

  • Ouyang LY, Chaung BR (1999) A minimax distribution free procedure for stochastic inventory models with a random backorder rate. J Oper Res Soc Jpn 42(3):342–351

    MATH  Google Scholar 

  • Ouyang LY, Chuang BR (2000) A Periodic review inventory model involving variable lead time with a service level constraint. Int J Syst Sci 31(10):1209–1215

    Article  MATH  Google Scholar 

  • Ouyang LY, Chuang BR (2001) Mixture inventory model involving variable lead time and controllable backorder rate. Comput Ind Eng 40(4):339–348

    Article  Google Scholar 

  • Ouyang LY, Wu KS (1997) Mixture inventory model involving variable lead time with a service level constraint. Comput Oper Res 24(9):875–882

    Article  MATH  Google Scholar 

  • Ouyang LY, Yeh NC, Wu KS (1996) Mixture inventory model with backorders and lost sales for variable lead time. J Oper Res Soc 47(6):829–832

    Article  MATH  Google Scholar 

  • Pan CH, Hsiao YC (2001) Inventory model backorder discounts and variable lead time. Int J Syst Sci 32:925–929

    Article  MATH  Google Scholar 

  • Pan JC, Hsiao Y-C, Lee C-J (2002) Inventory models with fixed and variable lead time crash costs considerations. J Oper Res Soc 53:1048–1053

    Article  MATH  Google Scholar 

  • Papachristos S, Skouri K (2000) An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential with type-backlogging. Oper Res Lett 27:175–184

    Article  MATH  Google Scholar 

  • Porteus EL (1985) Investing in reduced setups in the EOQ model. Manag Sci 31(8):998–1010

    Article  MATH  Google Scholar 

  • Priyan S, Uthayakumar R (2016) Economic design of multi-echelon inventory system with variable lead time and service level constraint in a fuzzy cost environment. Fuzzy Inf Eng 8(4):465–511

    Article  Google Scholar 

  • Raafat F (1991) Survey of literature on continuously deteriorating inventory models. J Oper Res Soc 42:27–37

    Article  MATH  Google Scholar 

  • Sana S, Goyal SK, Chaudhary KS (2004) A production inventory model for a deteriorating item with trended demand and shortages. Eur J Oper Res 157:357–371

    Article  MATH  Google Scholar 

  • Sarkar S, Giri BC (2020a) Stochastic supply chain model with imperfect production and controllable defective rate. Int J Syst Sci Oper Logist 7(2):133–146

    Google Scholar 

  • Sarkar S, Giri BC (2020b) A vendor–buyer integrated inventory system with variable lead time and uncertain market demand. Oper Res Int J 20:491–515

    Article  Google Scholar 

  • Sarkar B, Mahapatra AS (2017) Periodic review fuzzy inventory model with variable lead time and fuzzy demand. Int Trans Oper Res 24(5):1197–1227

    Article  MATH  Google Scholar 

  • Sarkar B, Mandal B, Sarkar S (2015a) Quality improvement and backorder price discount under controllable lead time in an inventory model. J Manuf Syst 35:26–36

    Article  Google Scholar 

  • Sarkar B, Chaudhuri K, Moon I (2015b) Manufacturing setup cost reduction and quality improvement for the distribution free continuous-review inventory model with a service level constraint. J Manuf Syst 34:74–82

    Article  Google Scholar 

  • Senapati AK, Mishra PC, Routra BC, Biswas A (2012) An extensive literature review on lead time reduction in inventory control. Int J Eng Adv Technol 1(6):2249–8958

    Google Scholar 

  • Shin D, Guchhait R, Sarkar B, Mittal M (2016) Controllable lead time, service level constraint, and transportation discounts in a continuous review inventory model. RAIRO Oper Res 50:921–934

    Article  MATH  Google Scholar 

  • Silver EA, Peterson R (1985) Decision systems for inventory management and production planning. Wiley, New York

    Google Scholar 

  • Sivakumar B (2009) A perishable inventory system with tetrial demands and a finite population. J Comput Appl Math 224:29–38

    Article  MATH  Google Scholar 

  • Tahami H, Mirzazadeh A, Arshadi-Khamseh A, Gholami-Qadikolaei A (2016) A periodic review integrated inventory model for buyer’s unidentified protection interval demand distribution. Cogent Eng 3(1):1206689

    Article  Google Scholar 

  • Taylor BW (1996) Introduction to management science. Prentice Hall, Hoboken

    Google Scholar 

  • Teng JT, Chang CT (2005) Economic production quantity models for deteriorating items with price and stock dependent demand. Comput Oper Res 32:297–308

    Article  MATH  Google Scholar 

  • Tersine RJ (1982) Principals of inventory and materials management. North Holland, New York

    Google Scholar 

  • Tiwari S, Sana SS, Sarkar S (2018) Joint economic lot sizing model with stochastic demand and controllable lead time by reducing ordering and setup cost. RACSAM 112:1075–1099

    Article  MATH  Google Scholar 

  • Tiwari S, Kazemi N, Modak NM et al (2020) The effect of human errors on an integrated stochastic supply chain model with setup cost reduction and backorder price discount. Int J Prod Econ 226:107643

    Article  Google Scholar 

  • Tiwari S, Cardenas-Barron LE, Malik AI, Jaggi CK (2022) Retailer’s credit and inventory decisions for imperfect quality and deteriorating items under two level trade credit. Comput Oper Res 138:105617

    Article  MATH  Google Scholar 

  • Vijayashree M, Uthayakumar R (2017) A single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time. J Ind Eng Int 13:393–416

    Article  Google Scholar 

  • Whitin TM (1957) Theory of inventory management. Princeton University Press, Princeton

    Google Scholar 

  • Yadav D, Singh SR, Kumar S, Cardenas-Barron LE (2022) Manufacturer-retailer integrated inventory model with controllable lead time and service level constraint under the effect of learning-forgetting in setup cost. Sci Iran 29:800–815

    Google Scholar 

Download references

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra K. Jaggi.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Research involving human participants and/or animals

There is no involvement of any human and/or Animals in this research work.

Consent to participate and consent for publication:

All the authors have approved/consented the manuscript and agree with its submission to the International Journal of System Assurance Engineering and Management.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For a value of \(L_{t} \in \left( {L_{ti} ,L_{t(i - 1)} } \right)\), Hessian Matrix H can be obtain as follows:

$$| H |= \left[ \begin{gathered} \frac{{\partial^{2} CAE^{\mathbb{R}} \left( {T,\pi_{m} ,L_{t} } \right)}}{{\partial T^{2} }}\frac{{\partial^{2} CAE^{\mathbb{R}} \left( {T,\pi_{m} ,L_{t} } \right)}}{{\partial T\partial \pi_{m} }} \hfill \\ \frac{{\partial^{2} CAE^{\mathbb{R}} \left( {T,\pi_{m} ,L_{t} } \right)}}{{\partial \pi_{m} \partial T}}\frac{{\partial^{2} CAE^{\mathbb{R}} \left( {T,\pi_{m} ,L_{t} } \right)}}{{\partial \pi_{m}^{2} }} \hfill \\ \end{gathered} \right]$$

Then, “calculating principal-minor H, first principal-minor of H” is

$$\begin{aligned} & \left| H \right| = \frac{{\partial^{2} CAE^{\mathbb{R}} \left( {T,\pi_{m} ,L_{t} } \right)}}{{\partial T^{2} }} \\ & CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} ) = \frac{{K + \sum\nolimits_{j = 1}^{i} {c_{j} } }}{T} + \frac{{\sigma \Psi (A)\left[ {\frac{{\beta_{0} \pi_{m}^{2} }}{{\pi_{n} }} + S + \pi_{n} - \frac{{\pi_{m} S\beta_{0} }}{{\pi_{n} }} - \pi_{m} \beta_{0} } \right]\left( {T + L_{t} } \right)^{\frac{1}{2}} }}{T} \\ & \quad + h_{c} \left[ {\frac{{D_{1} T}}{2} + \sigma A\left( {T + L_{t} } \right)^{\frac{1}{2}} + \sigma \left( {1 - \frac{{\beta_{0} \pi_{m} }}{{\pi_{n} }}} \right) \times \left( {T + L_{t} } \right)^{\frac{1}{2}} \times \Psi (A)} \right] \\ & \quad + \frac{1}{T}\left[ {\frac{{D_{1} + \theta s}}{\theta }\left( {e^{\theta T} - 1} \right) - D_{1} T} \right] \\ \end{aligned}$$
(19)
$$\begin{aligned} \frac{{CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{\partial T} & = - \frac{{\left( {K + \sum\nolimits_{j = 1}^{i} {c_{j} } } \right)}}{{T^{2} }} - \frac{{\sigma \times \psi (A) \times \left[ {\frac{{\beta_{0} \pi_{m}^{2} }}{{\pi_{n} }} + S + \pi_{n} - \frac{{S\beta_{0} \pi_{m} }}{{\pi_{n} }} - \beta_{0} \pi_{m} } \right] \times \left( {T + L_{t} } \right)^{\frac{1}{2}} }}{{T^{2} }} \\ & \quad + \frac{{\left[ {\frac{{\pi_{m}^{2} \beta_{0} }}{{\pi_{n} }} + \pi_{n} + S - \frac{{\pi_{m} \beta_{0} S}}{{\pi_{n} }} - \beta_{0} \pi_{m} } \right] \times \sigma \times \psi (A)}}{{2T\sqrt {T + L_{t} } }} \\ & \quad + h_{c} \left[ {\frac{{D_{1} }}{2} + \frac{\sigma A}{{2\sqrt {T + L_{t} } }} + \left( {1 - \frac{{\beta_{0} \pi_{m} }}{{\pi_{n} }}} \right) \times \frac{\sigma }{2} \times \psi (A) \times \frac{1}{{\sqrt {T + L_{t} } }}} \right] \\ & \quad + \frac{{\left( {D_{1} + \theta s} \right)}}{\theta } \times \frac{{\left( {\theta T - 1} \right)}}{{Te^{ - \theta T} }} + \frac{{\left( {D_{1} + \theta s} \right)}}{{T^{2} \theta }} \\ \end{aligned}$$
(20)

This can be written as

$$\begin{aligned} & \frac{{\left( {K + \sum\nolimits_{j = 1}^{i} {c_{j} } } \right)}}{{T^{2} }} + \frac{{N(\pi_{x} ) \times \sigma \times \psi (A) \times \left( {T + L_{t} } \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}}} }}{{T^{2} }} = \frac{{N(\pi_{x} ) \times \sigma \times \psi (A)}}{{2T\sqrt {T + L_{t} } }} \\ & \quad + h_{c} \left[ {\frac{{D_{1} }}{2} + \frac{\sigma A}{{2\sqrt {T + L_{t} } }} + \left( {1 - \frac{{\beta_{0} \pi_{m} }}{{\pi_{n} }}} \right) \times \frac{1}{2} \times \sigma \times \psi (A) \times \frac{1}{{\sqrt {T + L_{t} } }}} \right] \\ & \quad + \frac{{\left( {D_{1} + \theta s} \right)}}{\theta } \times \frac{{\left( {\theta T - 1} \right)}}{{Te^{ - \theta T} }} + \frac{{\left( {D_{1} + \theta s} \right)}}{{\theta T^{2} }} \\ & {\text{where}}\quad N(\pi_{m} ) = \left[ {\frac{{\beta_{0} \pi_{m}^{2} }}{{\pi_{n} }} + S + \pi_{n} - \frac{{S\beta_{0} \pi_{m} }}{{\pi_{n} }} - \beta_{0} \pi_{m} } \right] \\ \end{aligned}$$
(21)
$$\begin{aligned} \frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial T^{2} }} &= \frac{{2\left( {K + \sum\nolimits_{j = 1}^{i} {c_{j} } } \right)}}{{T^{3} }} + \frac{{\left( {3T + 4L} \right) \times N(\pi_{m} ) \times \sigma \times \psi (A)}}{{2T^{3} \sqrt {T + L_{t} } }} + \frac{{\left( {3T + 2L} \right) \times N(\pi_{m} ) \times \sigma \times \psi (A)}}{{4\sqrt {T + L_{t} } }} \\ & \quad - \frac{\sigma Ah}{{4(T + L_{t} )^{\frac{3}{2}} }} - \frac{\psi (A)\sigma h}{{4(T + L_{t} )^{\frac{3}{2}} }} + \frac{{\pi_{{m\beta_{0} }} }}{{4\pi_{n} }} \times \frac{\psi (A) \times \sigma }{{(T + L_{t} )^{\frac{3}{2}} }} + \frac{{\left( {D_{1} + \theta s} \right)}}{\theta } \times \left[ {\theta^{2} e^{\theta T} - \frac{{\left( {\theta T - 1} \right)}}{{e^{ - \theta T} T^{2} }} - \frac{2}{{T^{3} }}} \right] \\ & {\text{where}}\quad N(\pi_{m} ) = \left[ {\frac{{\beta_{0} \pi_{m}^{2} }}{{\pi_{n} }} + S + \pi_{n} - \frac{{S\beta_{0} \pi_{m} }}{{\pi_{n} }} - \beta_{0} \pi_{m} } \right] \\ \end{aligned}$$
(22)
$$\frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial T^{2} }} = \psi (T) - \frac{{h_{c} \sigma }}{4}\left[ {\frac{A}{{(T + L_{t} )^{\frac{3}{2}} }} + \frac{\psi (A)}{{(T + L_{t} )^{\frac{3}{2}} }}} \right]$$

where

$$\begin{aligned} \psi (T) & = \frac{{2\left( {K + \sum\limits_{j = 1}^{i} {c_{j} } } \right)}}{{T^{3} }} + \frac{{\left( {3T + 4L_{t} } \right) \times N(\pi_{m} ) \times \sigma \times \psi (A)}}{{2T^{3} \sqrt {T + L_{t} } }} + \frac{{\left( {3T + 2L_{t} } \right) \times N(\pi_{m} ) \times \sigma \times \psi (A)}}{{4\sqrt {T + L_{t} } }} + \frac{{\pi_{m} \beta_{0} }}{{4\pi_{n} }} \times \frac{\psi (A)\sigma }{{(T + L_{t} )^{\frac{3}{2}} }} \\ & \quad + \frac{{\left( {D_{1} + \theta s} \right)}}{\theta } \times \left[ {\theta^{2} e^{\theta T} - \frac{{\left( {\theta T - 1} \right)}}{{e^{ - \theta T} T^{2} }} - \frac{2}{{T^{3} }}} \right] \\ \end{aligned}$$
(23)

Currently

$$\begin{aligned} & \left| {H_{11} } \right| = \frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial T^{2} }} = \psi (T) - \frac{{h_{c} \sigma }}{4}\left[ {\frac{A}{{(T + L_{t} )^{\frac{3}{2}} }} + \frac{\psi (A)}{{(T + L_{t} )^{\frac{3}{2}} }}} \right] \\ & \delta (T) = \frac{{\left( {K + \sum\limits_{j = 1}^{i} {c_{j} } } \right)}}{{T^{2} }} + \frac{{N(\pi_{m} ) \times \sigma \times \psi (A) \times \left( {T + L_{t} } \right)^{\frac{1}{2}} }}{{T^{2} }} - \frac{{N(\pi_{m} ) \times \sigma \times \psi (A)}}{{2T\sqrt {T + L_{t} } }} + \frac{{\left( {D_{1} + \theta s} \right)}}{\theta } \times \frac{{\left( {\theta T - 1} \right)}}{{e^{ - \theta T} T}} + \frac{{\left( {D_{1} + \theta s} \right)}}{{\theta T^{2} }} \\ & {\text{Then}}\quad \delta (T) > \frac{{h_{c} \sigma }}{4}\left[ {\frac{A}{{(T + L_{t} )^{\frac{3}{2}} }} + \frac{\psi (A)}{{(T + L_{t} )^{\frac{3}{2}} }}} \right] \\ \end{aligned}$$
(24)

So from above, the following have

$$\left| {H_{11} } \right| > \psi (T) - \delta (T) > 0$$

This indicates \((S + \pi_{n} ) > \pi_{m} (\therefore s > 0 \,and \, \pi_{n} > \pi_{m} ).\)

Therefore, \(\left| {H_{11} } \right| > 0\)

$$\begin{aligned} & \frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial T\partial \pi_{m} }} = - \frac{{\left[ {\frac{{2\pi_{{m\beta_{0} }} }}{{\pi_{n} }} + S + \pi_{n} - \frac{{S\beta_{0} }}{{\pi_{n} }} - \beta_{0} } \right] \times \psi (A) \times \sigma \times \left( {T + L_{t} } \right)^{\frac{1}{2}} }}{{T^{2} }} \\ & \quad + \frac{{\left[ {\frac{{2\beta_{0} \pi_{m} }}{{\pi_{n} }} + S + \pi_{n} - \frac{{S\beta_{0} }}{{\pi_{n} }} - \beta_{0} } \right] \times \frac{\sigma }{2} \times \frac{1}{{\sqrt {T + L_{t} } }} \times \psi (A)}}{T} - \frac{{h_{c} \beta_{0} }}{{\pi_{n} }} \times \frac{\sigma }{2} \times \frac{1}{{\sqrt {T + L_{t} } }} \times \psi (A) \\ \end{aligned}$$
(25)
$$\frac{{\partial CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial \pi_{m} }} = \frac{{\left[ {\frac{{2\pi_{m} \beta_{0} }}{{\pi_{n} }} + \pi_{n} + S - \frac{{S\beta_{0} }}{{\pi_{n} }} - \beta_{0} } \right]}}{T} - \frac{{h_{c} \beta_{0} }}{{\pi_{n} }} \times \sigma \times \left( {T + L_{t} } \right)^{\frac{1}{2}} \times \psi (A)$$
(26)
$$\frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial \pi_{n}^{2} }} = \frac{{2\beta_{0} }}{{\pi_{n} }}$$
(27)

Similarly

The “second principal minor” H is

$$\begin{aligned} \left| {H_{22} } \right| & = \left[ \begin{gathered} \frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial T^{2} }}\frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial T\partial \pi_{x} }} \hfill \\ \frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial \pi_{m} \partial T}}\frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial \pi_{m}^{2} }} \hfill \\ \end{gathered} \right] \\ \left| {H_{22} } \right| & = \left[ {\frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial T^{2} }} \times \frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial \pi_{m}^{2} }} - \left( {\frac{{\partial^{2} CAE^{\mathbb{R}} (T,\pi_{m} ,L_{t} )}}{{\partial T\partial \pi_{m} }}} \right)^{2} } \right] \\ & \quad \therefore = \frac{{2\beta_{0} }}{{\pi_{n} }} \times \left\{ \begin{gathered} \frac{{2\left( {K + \sum\limits_{j = 1}^{i} {c_{j} } } \right)}}{{T^{3} }} + \frac{{\left( {3T + 4L_{t} } \right) \times N(\pi_{m} ) \times \sigma \times \psi (A)}}{{2T^{3} \left( {T + L_{t} } \right)^{\frac{1}{2}} }} + \frac{{\left( {3T + 4L_{t} } \right) \times N(\pi_{m} ) \times \sigma \times \psi (A)}}{{2T^{3} \left( {T + L_{t} } \right)^{\frac{1}{2}} }} \hfill \\ - \frac{{h_{c} A\sigma }}{{4(T + L_{t} )^{\frac{3}{2}} }} - \frac{{\psi (A)\sigma h_{c} }}{{4(T + L_{t} )^{\frac{3}{2}} }} + \frac{{\pi_{m} \beta_{0} }}{{4\pi_{n} }} \times \sigma \times \frac{\psi (A)}{{(T + L_{t} )^{\frac{3}{2}} }} \hfill \\ + \left[ {\frac{{\theta^{2} }}{{e^{ - \theta T} }} - \frac{2}{{T^{3} }} - \frac{{\left( {\theta T - 1} \right)}}{{e^{ - \theta T} T^{2} }}} \right] \times \frac{{\left( {D_{1} + \theta s} \right)}}{\theta } \hfill \\ \end{gathered} \right\} \\ & \quad - \left\{ \begin{gathered} - \frac{{\left[ {\frac{{2\beta_{0} \pi_{m} }}{{\pi_{n} }} + S + \pi_{n} - \frac{{S\beta_{0} }}{{\pi_{n} }} - \beta_{0} } \right] \times \sigma \times \psi (A) \times \sqrt {T + L_{t} } }}{{T^{2} }} + \frac{{\left[ {\frac{{2\beta_{0} \pi_{m} }}{{\pi_{n} }} + S + \pi_{n} - \frac{{S\beta_{0} }}{\pi n} - \beta_{0} } \right] \times \sigma \times \psi (A)}}{{2T\sqrt {T + L_{t} } }} \hfill \\ - \frac{{h_{c} \beta_{0} }}{{\pi_{n} }} \times \frac{\sigma }{2} \times \left( {T + L_{t} } \right)^{{\frac{ - 1}{2}}} \times \psi (A) \hfill \\ \end{gathered} \right\}^{2} > 0 \\ \end{aligned}$$
(28)

for \((S + \pi_{n} ) > \pi_{m} .\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Nasreen, R., Arneja, N. et al. Optimization of a periodically assessing model with manageable lead time under SLC with back order rebate for deteriorating items. Int J Syst Assur Eng Manag 14, 241–266 (2023). https://doi.org/10.1007/s13198-022-01784-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-022-01784-1

Keywords