Skip to main content

Advertisement

Log in

Predicting stock market using machine learning: best and accurate way to know future stock prices

  • REVIEW PAPER
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Dissatisfaction is the first step of progress, this statement serves to be the base of using Artifcial Intelligence in predicting stock prices. A great deal of people dreamed of predicting stock prices faultlessly but it remained only as a dream for those visionaries at that time. The legacy of those visionaries led to the discovery of something concrete and made that dream come to reality, and due to this we can use machine learning methods in today’s era for predicting accurate stock prices. These methods have proved to be extremely beneficial and an easy way for common man to earn quick money if done appropriately. These methods still have drawbacks that are being worked upon and it confirmations immense improvement in the future unlike the prior methods of predicting stock market prices like time-series forecasting that didn’t provide results that satisfying the needs of an investor. As a result, to deal with the volatile and dynamic nature of the market, a link between stock market and Artificial Intelligence was founded that brought about wonders. The three methods that were implemented in the prediction process were Artificial Neural Network (ANN), Support Vector Machine (SVM) and Long Short-Term Memory (LSTM). ANN works on neural network, SVM works using Kernel method and LSTM works using Keras LSTM. Various techniques offered by each methodology are carefully analyzed and it was found that ANN based on neural network provides best results because it considers complex, non-linear relationships and recognizes patterns. While SVM is comparatively a new method and capable of providing better results in the future and LSTM gives good results only when large dataset is given which can be considered a drawback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

All relevant data and material are presented in the main paper.

References

Download references

Acknowledgements

The authors are grateful to Delhi Public School and Department of Chemical Engineering, School of Energy Technology, Pandit Deendayal Energy University for the permission to publish this research.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors make a substantial contribution to this manuscript. DS and MS participated in drafting the manuscript. DS and MS wrote the main manuscript. All the authors discussed the results and implication on the manuscript at all stages.

Corresponding author

Correspondence to Manan Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheth, D., Shah, M. Predicting stock market using machine learning: best and accurate way to know future stock prices. Int J Syst Assur Eng Manag 14, 1–18 (2023). https://doi.org/10.1007/s13198-022-01811-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-022-01811-1

Keywords