Skip to main content
Log in

ECG signal analysis using autoregressive modelling with and without baseline wander

  • ORIGINAL ARTICLE
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

According to the report of Times of India, India is becoming the heart disease capital of the world. Consequently, its need of time to make more efforts to enhance the research regarding heart and heart disease to keep the country away from facing any unpleasant and disastrous situation in future. For correctly diagnosing the type of heart disease, Electrocardiogram (ECG) is an important tool which conveys the information in terms of three waves namely; P-wave, QRS-wave, and T-wave. For analyzing the patterns (characteristics) of these waves, Autoregressive (AR) coefficients are required. In this paper,various real recordings are done. For classification purpose, two techniques viz. K-Nearest Neighbor (KNN) and Principal Component analysis (PCA) are used individually. Autoregressive modelling is done on ECG signal with baseline wander (BLW) and ECG signal without BLW for comparing the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Available on physionet website (https://physionet.org). Software application which is developed by present authors.

References

  • Abbas AK, Fausto N (2005) Robbins and cotran pathologic basis of disease, 7th edn. Elsevier Saunders, Amsterdam

    Google Scholar 

  • Alireza Akoushideh, Ali Zakerolhosseini, Babak Mazloom-nezhadMaybodi, MohammadtaghyMirzaee. Elimination of Heart Signal Baseline Wandering by Neural Network. International Journal of Modern Engineering Research (IJMER). 2(5), Sep-Oct. 2012 pp-3803–3806.

  • Alhamdi M (2015) Analysis of human electrocardiogram for arrhythmia auto-classification and biometric recognition systems using analytic and autoregressive modeling parameters. Thesis. Doctor of Engineering. Faculty of technology. University of Portsmouth Student No: 475227.

  • Md. Ashfanoor Kabir, Celia Shahnaz. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomedical Signal Processing and Control 7 (2012) 481– 489.

  • Alireza Behrad, Karim Faez. New method for QRS wave recognition in ECG using MART neural network. Seventh Australian and New Zealand Intelligent Information Systems Conference, 18–21 November 2001, Perth, Western Australia, pp. 291–296.

  • Belderrar A, Hazzab A (2021) Real-time estimation of hospital discharge using fuzzy radial basis function network and electronic health record data. Int J Med Eng Inf 13(1):75–83

    Google Scholar 

  • Benitez D, Gaydeckia PA, Zaidib A, Fitzpatrick AP (2001) The use of the Hilbert transform in ECG signal analysis. Comput Biol Med 31:399–406

    Article  CAS  PubMed  Google Scholar 

  • Chawla MPS (2007) Parameterization and R-peak error estimations of ECG signals using independent component analysis. Comput Math Methods Med 8:263–285

    Article  MathSciNet  Google Scholar 

  • Chawla MPS (2009) A comparative analysis of principal component and independent component techniques for electrocardiograms. Int J Neural Comput Appl 18:539–556

    Article  Google Scholar 

  • Chawla MPS, Verma HK, Kumar V (2008) Artifacts and noise removal in electrocardiograms using independent component analysis. Int J Cardiol 129:278–281

    Article  CAS  PubMed  Google Scholar 

  • Chawla MPS, Verma HK, Kumar V (2008) A new statistical PCA-ICA algorithm for location of R-peaks in ECG. Int J Cardiol 129:146–148

    Article  CAS  PubMed  Google Scholar 

  • Chawla MPS, Verma HK, Kumar V (2011) Data reduction and removal of base-line wander using principal component analysis. DSP Elsevier 11:2216–2226

    Google Scholar 

  • Chawla MPS, Verma, HK, Kumar, V. ECG modeling and QRS detection using principal component analysis. IET Proceedings, International Conference, MEDSIP-06, Glasgow, UK, July 2006.

  • Chen S-W, Chen H-C, Chan H-L (2006) A real-time QRS detection method based onmoving-averaging incorporating with wavelet denoising. Comput Methods Programs Biomed 82:187–195

    Article  PubMed  Google Scholar 

  • Daamouche A, Hamami L, Alajlan N, Melgani F (2012) A wavelet optimization approach for ECG signal classification. Biomed Signal Process Control 7:342–349

    Article  Google Scholar 

  • Dange AA, Nalbalwar SL, Sheth SP (2014) Detection of QRS complexes in ECG signal using K-means algorithm. Int J Eng Res Technol (IJERT). 3(5)

  • Darrington J (2006) Towards real time QRS detection: a fast method using minimal pre-processing. Biomed Signal Process Control 1:169–176

    Article  Google Scholar 

  • Donna Giri U, Acharya R, Martis RJ, VinithaSree S, Lim T-C, Thajudin Ahamed VI, Suri JS (2013) Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. Knowl-Based Syst 3:274–282

    Article  Google Scholar 

  • EdoardoPasolli, Farid Melgani (2010) Active learning methods for electrocardiographic signal classification. IEEE Trans Inf Technol Biomed 16(6)

  • ElifDeryaUbeyli (2009) Combining recurrent neural networks with eigenvector methods for classification of ECG beats. Digital Signal Process 19:320–329

    Article  Google Scholar 

  • Gao P, Chang EC, Wyse L. Blind separation of fetal ECG from single mixture using SVD and ICA. Proceedings of ICICS-PCM. 15–18 December 2003, Singapore

  • Han J, Kamber M (2000) Data mining concepts and techniques, 2nd edn. Morgan Kauffman Publisher, Burlington

    Google Scholar 

  • Han J, Wang Y, Gong H (2022) Fundus retinal vessels image segmentation method based on improved U-Net. IRBM 43(6):628–639. https://doi.org/10.1016/j.irbm.2022.03.001

    Article  Google Scholar 

  • He T, Clifford G, Tarassenko L (2006) Application of independent component analysis in removing artefacts from the electrocardiogram. Neural Comput Appl 15:105–116

    Article  Google Scholar 

  • Huhta JC, Webster JG (1973) 60 Hz interference in electrocardiography. IEEE Trans Biomed Eng 20:91–100

    Article  CAS  PubMed  Google Scholar 

  • Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430

    Article  CAS  PubMed  Google Scholar 

  • Hyvarinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, Amsterdam

    Book  Google Scholar 

  • Jain K, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20

    Article  Google Scholar 

  • Jaya Prakash Sahoo (2011) Analysis of ECG signal for detection of cardiac arrhythmias. Thesis. Department of Electronics and Communication Engineering National Institute Of Technology, Rourkela Orissa 769 008, INDIA

  • Jayant A, Singh T, Kaur M (2013) Different techniques to remove baseline wander from ECG signal. Int J Emerg Res Manage Technol 2:16–19

    Google Scholar 

  • Jog NK (2013) Electronics in medicine and biomedical instrumentation. 2nd ed. PHI

  • JokiniemiT SK, Nenonen J, Tierala J, Toivenen L, Katila T (2003) Baseline reconstruction for localization of rapid ventricular tachycardia from body surface potential maps. Physiol Meas 24(3):641–651

    Article  Google Scholar 

  • Kaur I, Rajni R, Marwaha A (2016) ECG signal analysis and arrhythmia detection using wavelet transform. J Inst Eng India Ser B 97:499–507

    Article  Google Scholar 

  • Kelwade JP, Salankar SS (2015) Prediction of cardiac arrhythmia using artificial neural network. Int J Computer Appl (0975–8887) 115

  • Kristian Kersting, Luc De Raedt (2013) Bayesian Logic Programming: Theory and Tool. pp.1–31

  • Bert-Uwe Kohler, Carsten Hennig, Reinhold Orglmeister (2012) The principles of Software QRS detection. IEEE Engineering in medicine and biology.pp.42–57

  • Pravin R. Kshirsagar, Sudhir G.Akojwar, Ramkumar Dhanoriya. Classification of ECG-signals using Artificial Neural Networks. pp. 1–4.

  • Levkov C, Mihov G, Ivanov R, Daskalov I, Christov I, Dotsinsky I (2005) Removal of power-line interference from the ECG: a review of the subtraction procedure. Biomed Eng Online 4:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Nunes JC, Toumoulin C, Luo L (2018) 3D coronary artery reconstruction by 2D motion compensation based on mutual information. IRBM 39(1):69–82. https://doi.org/10.1016/j.irbm.2017.11.005

    Article  CAS  Google Scholar 

  • Lin S-H (2000) An introduction to face recognition technology. Inf Sci Special Issue Multimed Inf Technol 3(1):1–7

    ADS  Google Scholar 

  • Liu S-H, Cheng D-C, Lin C-M (2013) Arrhythmia identification with two-lead electrocardiograms using artificial neural networks and support vector machines for a portable ECG Monitor system. Sensors 13:813–828

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Malarvili MB, Mesbah M, BoualemBoashash (2007) Time-frequency analysis of heart rate variability for neonatal seizure detection. Hindawi Publishing Corporation EURASIP J Adv Signal Process. https://doi.org/10.1155/2007/50396

    Article  Google Scholar 

  • Mansier P, Clairambault J, Charlotte N, Medigue C, Vermeiren C, LePape G, Car F, AthanassiaGounaropoulou BS (1996) Linear and non-linear analyses of heart rate variability: a minireview. Cardiovasc Res 31:371–379

    Article  CAS  PubMed  Google Scholar 

  • Martínez JP, Almeida R, Salvador AP, Rocha PL (2004) A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng 51(4):570–581

    Article  PubMed  Google Scholar 

  • Martis RJ, Rajendra Acharya U, Mandana KM, Ray AK, Chakraborty C (2012) Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst Appl 39:11792–11800

    Article  Google Scholar 

  • Maton A, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, La D, Hart, Wright JD (1993) Human biology and health. Prentice Hall, Hoboken

    Google Scholar 

  • Mehta SS, Lingayat NS (2007) Support vector machine for cardiac beat detection in single lead electrocardiogram. IAENG Int J Appl Math 36:2

    MathSciNet  Google Scholar 

  • Mukhopadhyay S, Sircar P (1996) Parametric modelling of ECG signal. Med Biol Eng Compu 34:171–174

    Article  CAS  Google Scholar 

  • Srinivas N, Babu AV, Rajak MD (2013) ECG Signal Analysis using data clustering and artificial neural networks. Am Int J Res Sci, Technol Eng Math. ISSN (Print): 2328–3491, ISSN (Online): 2328–3580, ISSN (CD-ROM): 2328–3629.

  • van Oosterom A, Hoekema R, Uijen GJH (2000) Geometrical factors affecting the interindividual variability of the ECG and the VCG. J Electrocardiol 33:1–9

    Google Scholar 

  • P Jafari Moghadam Fard, MH Moradi, MR Tajvidi (2008) A novel approach in R peak detection using hybrid complex waveleT (HCW). Int J Cardiol 124:250–253

    Article  Google Scholar 

  • Padmavathi K, Sri RK (2015) Classification of ECG signal during Atrial fibrillation using autoregressive modelling. Proc Comput Sci 46:53–59

    Article  Google Scholar 

  • Poh TC, Lani NFM, Kin LW (2007) Multi-dimensional features reduction of PCA on SVM classifier for imaging surveillance application. Int J Syst Appl Eng Dev 1:45–50

    Google Scholar 

  • Ramachandran SK, Manikandan P (2021) An efficient ALO-based ensemble classification algorithm for medical big data processing. Int J Med Eng Inf 13(1):54–63. https://doi.org/10.1504/IJMEI.2021.111864

    Article  Google Scholar 

  • Alvarez RA (2013) A comparison of three QRS detection algorithms over a public database. Preprint submitted to Elsevier, pp 1–20

  • Rijn MV, Peper A, Grimbergen CA (1990) High-quality recording of bioelectrical events, Part 1: interference reduction, theory and practice. Med BiolEng Comput 28:389–397

    Article  Google Scholar 

  • Ruha A, Sallinen S, Nissila S (1997) A real-time microprocessor QRS detector system WITH a 1-ms timing accuracy for the measurement of ambulatory HRV. IEEE Trans Biomed Eng 44:159–167

    Article  CAS  PubMed  Google Scholar 

  • Sabarimalai Manikandan M, Soman KP (2012) A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed Signal Process Control 7(2):118–128

    Article  Google Scholar 

  • Sadr A, NajmehMohsenifar RS, Okhovat, (2011) Comparison of MLP and RBF neural networks for Prediction of ECG Signals. IJCSNS Int J Comput Sci Netw Secur 11(11):124–128

    Google Scholar 

  • Saini I, Singh D, Khosla A (2013) QRS detection using K-nearest neighbor algorithm (KNN) and evaluation on standard ECG databases. J Adv Res 4(4):331–344

    Article  PubMed  Google Scholar 

  • Sandham W, Hamilton D, Laguna P, Cohen M (2007) Advances in electrocardiogram signal processing and analysis. EURASIP J Adv Signal Process 69169:5. https://doi.org/10.1155/2007/69169

    Article  Google Scholar 

  • Sansone M, Fusco R, Pepino A, Sansone C (2013) Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review. J Healthcare Eng 4(4):465–504

    Article  Google Scholar 

  • Saritha C, Sukanya V, Narasimha Murthy Y (2008) ECG signal analysis using wavelet transform. Burg J Phys 35:68–77

    Google Scholar 

  • Serbest K, Bozkurt MR, Eldoğan O (2015) Classification of cardiac arrhythmias with artificial neural networks according to gender differences. J Eng Sci Technol 10(9):1144–1149

    Google Scholar 

  • Sornmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological applications. Elsevier, Amsterdam

    Google Scholar 

  • Stamkopoulos T, Diamantaras K, Maglaveras N, Strintzis M (1998) ECG analysis using nonlinear PCA neural networks for ischemia detection. IEEE Trans Signal Process 46(11):3058–3067

    Article  ADS  Google Scholar 

  • Subbiah S, Patro R, Subbuthai P (2015) Feature extraction and classification for ecg signal processing based on artificial neural network and machine learning approach. In: International conference on inter disciplinary research in engineering and technology [ICIDRET], pp 50–57.

  • Sufi F, Khalil I (2011) Diagnosis of cardiovascular abnormalities from compressed ECG: a data mining-based approach. IEEE Trans Inf Technol Biomed 15(1):33–39

    Article  PubMed  Google Scholar 

  • JMA Tanskanen, JJ Viik (2012) Independent component analysis in ECG signal processing. InTechOpen 349–371

  • Tarmizi IA, Hassan SS, Ibrahim WP (2013) A journal of real peak recognition of electrocardiogram (ECG) signals using neural network. Am J Netw Commun 2(1):9–16. https://doi.org/10.11648/j.ajnc.20130201.12

    Article  Google Scholar 

  • Thakor NV, Webster JG (1980) Ground free ECG recording with two electrodes. IEEE Trans Biomed Eng 27:699–704

    Article  CAS  PubMed  Google Scholar 

  • Towe BC (1981) Comments on ground-free ECG recording with two electrodes. IEEE Trans Biomed Eng 28:838–839

    Article  CAS  PubMed  Google Scholar 

  • Montaño VD, Linsangan NB, Ramos ND (2015) ECG signal classification for remote area patients using artificial neural networks in smartphone. Int J Comput Electr Eng 7(3):215–222

  • Wadhwani AK, Yadav M (2013) Delineation of ECG signal by using various method and techniques. Int J Modern Eng Res 2:662–665

    Google Scholar 

  • Wall ME, Rechtsteiner A, Rocha LM (2003) Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M (eds) A Practical Approach to Microarray Data Analysis. Kluwer, Norwell, pp 91–109

    Chapter  Google Scholar 

  • Xu X, Huang L, Wu R, Zhang W, Ding G, Liu L, Chi M, Xie J (2022) Multi-feature fusion method for identifying carotid artery vulnerable plaque. IRBM 43(4):272–278. https://doi.org/10.1016/j.irbm.2021.07.004

    Article  Google Scholar 

  • ZahiaZidelmala AA, Adnaneb M, Belouchrani A (2012) QRS detection based on wavelet coefficients. Comput Methods Programs Biomed 107:490–496

    Article  Google Scholar 

  • Zivanovic M, Izal MG (2013) Simultaneous powerline interference and baseline wander removal from ECG and EMG signals by sinusoidal modelling. Med Eng Phys 35:1431–1441

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Gupta.

Ethics declarations

Confict of interest

Authors declare that they have no confict of interest.

Ethical approval

All authors ensure the ethical approval.

Consent to participate

All authors have the consent to participate.

Consent to publish

All authors have the consent to publish the paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Saxena, N.K., Kanungo, A. et al. ECG signal analysis using autoregressive modelling with and without baseline wander. Int J Syst Assur Eng Manag 15, 1119–1146 (2024). https://doi.org/10.1007/s13198-023-02196-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-023-02196-5

Keywords

Navigation