Skip to main content
Log in

Learning from Nature: Biologically Inspired Robot Navigation and SLAM—A Review

  • Fachbeitrag
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

In this paper we summarize the most important neuronal fundamentals of navigation in rodents, primates and humans. We review a number of brain cells that are involved in spatial navigation and their properties. Furthermore, we review RatSLAM, a working SLAM system that is partially inspired by neuronal mechanisms underlying mammalian spatial navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arleo A, Gerstner W (2000) Modeling rodent head-direction cells and place cells for spatial learning in bio-mimetic robotics. In: Meyer J, Berthoz A, Floreano D, Roitblat H, Wilson S (eds) From animals to animats. MIT Press, Cambridge, pp 236–245

    Google Scholar 

  2. Arleo A, Gerstner W (2000) Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity. Biol Cybern 83(3):287–299

    Article  Google Scholar 

  3. Arleo A, Smeraldi F, Gerstner W (2004) Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Trans Neural Netw 15(3):639–652

    Article  Google Scholar 

  4. Barrera A, Weitzenfeld A (2008) Biologically-inspired robot spatial cognition based on rat neurophysiological studies. Auton Robots 25(1–2):147–169

    Article  Google Scholar 

  5. Blair H, Sharp P (1995) Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J Neurosci 15(9):6260–6270

    Google Scholar 

  6. Burgess N, Reece M, O’Keefe J (1994) A model of hippocampal function. Neural Netw 7:1065–1081

    Article  MATH  Google Scholar 

  7. Cacucci F, Lever C, Wills TJ, Burgess N, O’Keefe J (2004) Theta-modulated place-by-direction cells in the hippocampal formation in the rat. J Neurosci 24(38):8265–8277

    Article  Google Scholar 

  8. de Araujo IET, Rolls ET, Stringer SM (2001) A view model which accounts for the spatial fields of hippocampal primate spatial view cells and rat place cells. Hippocampus 11:699–706

    Article  Google Scholar 

  9. Duckett T, Marsland S, Shapiro J (2000) Learning globally consistent maps by relaxation. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’2000), San Francisco, CA

  10. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425(6954):184–188

    Article  Google Scholar 

  11. Foo P, Duchon A, Warren WH, Tarr MJ (2007) Humans do not switch between path knowledge and landmarks when learning a new environment. Psychol Res 71(3):240–251

    Article  Google Scholar 

  12. Foo P, Warren WH, Duchon A, Tarr MJ (2005) Do humans integrate routes into a cognitive map? Map-versus landmark-based navigation of novel shortcuts. J Exper Psychol Learn Mem Cogn 31(2):195–215

    Article  Google Scholar 

  13. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264

    Article  Google Scholar 

  14. Golfarelli M, Maio D, Rizzi S (1998) Elastic correction of dead-reckoning errors in map building In: Proc IEEE/RSJ international conference on intelligent robots and systems, vol 2, pp 905–911

  15. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  Google Scholar 

  16. Itti L, Koch C, Niebur E (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20

  17. Matsumura N, Nishijo H, Tamura R, Eifuku S, Endo S, Ono T (1999) Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation. J Neurosci 19(6):2381–2393

    Google Scholar 

  18. McNaughton BL, Chen LL, Markus EJ (1991) “Dead reckoning,” landmark learning, and the sense of direction: a neurophysiological and computational hypothesis. J Cogn Neurosci 3(2):190–202

    Article  Google Scholar 

  19. Milford M, Wyeth G, Prasser D (2006) Ratslam on the edge: revealing a coherent representation from an overloaded rat brain. In: Proc IEEE/RSJ international conference on intelligent robots and systems, pp 4060–4065

  20. Milford MJ (2008) Robot navigation from nature. Springer-Verlag, Berlin

    MATH  Google Scholar 

  21. Milford MJ, Prasser D, Wyeth GF (2005) Experience mapping: producing spatially continuous environment representations using ratslam. In: Proc of Australasian conference on robotics and automation, Sydney, Australia

  22. Milford MJ, Wyeth GF (2003) Hippocampal models for simultaneous localisation and mapping on an autonomous robot. In: Proc of Australasian conference on robotics and automation, Brisbane, Australia

  23. Milford MJ, Wyeth GF (2008) Mapping a suburb with a single camera using a biologically inspired SLAM system. IEEE Trans Robot 24(5). DOI 10.1109/TRO.2008.2004520

  24. Moser E, Moser M-B (2007) Grid cells. Scholarpedia 2(7):3394

    Article  Google Scholar 

  25. Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci 31(1)

  26. Muller RU, Kubie JL (1987) The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci 7:1951–1969

    Google Scholar 

  27. O’Keefe J (1976) Place units in the hippocampus of the freely moving rat. Exp Neurol 51(1):78–109

    Article  Google Scholar 

  28. O’Keefe J, Conway D (1978) Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res 31(4):573–590

    Google Scholar 

  29. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175

    Article  Google Scholar 

  30. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, London

    Google Scholar 

  31. O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3(3):317–330

    Article  Google Scholar 

  32. O’Keefe J, Speakman A (1987) Single unit activity in the rat hippocampus during a spatial memory task. Exp Brain Res 68(1):1–27

    Google Scholar 

  33. Redish A, Touretzky DS (1997) Cognitive maps beyond the hippocampus. Hippocampus 7(1):15–35

    Article  Google Scholar 

  34. Robertson R, Rolls ET, Georges-François P, Panzeri S (1999) Head direction cells in the primate pre-subiculum. Hippocampus 9:206–219

    Article  Google Scholar 

  35. Robertson RG, Rolls ET, Georges-François P (1998) Spatial view cells in the primate hippocampus: effects of removal of view details. J Neurophys 79(3):1145–1156

    Google Scholar 

  36. Rolls ET (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9(4):467–480

    Article  Google Scholar 

  37. Rolls ET (2005) Head direction and spatial view cells in primates, and brain mechanisms for path integration. In: Head direction cells and the neural mechanisms underlying directional orientation. MIT Press, Cambridge, pp 299–318

    Google Scholar 

  38. Rolls ET, O’Mara SM (1995) View-responsive neurons in the primate hippocampal complex. Hippocampus 5(5):409–424

    Article  Google Scholar 

  39. Samsonovich A, McNaughton BL (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci 17(15):5900–5920

    Google Scholar 

  40. Sargolini F, Fyhn M, Hafting T, Mcnaughton BL, Witter MP, Moser M-B, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312(5774):758–762

    Article  Google Scholar 

  41. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6(2):149–172

    Article  Google Scholar 

  42. Solstad T, Boccara CN, Kropff E, Moser M-B, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322(5909):1865–1868

    Article  Google Scholar 

  43. Strösslin T, Sheynikhovich D, Chavarriaga R, Gerstner W (2005) Robust self-localisation and navigation based on hippocampal place cells. Neural Netw 18(9):1125–1140

    Article  MATH  Google Scholar 

  44. Sturz BR, Bodily KD, Katz JS, Kelly DM (2009) Evidence against integration of spatial maps in humans: generality across real and virtual environments. Anim Cogn 12(2):237–247

    Article  Google Scholar 

  45. Taube JS, Muller RU, Ranck JB (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10(2):420–435

    Google Scholar 

  46. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Sünderhauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sünderhauf, N., Protzel, P. Learning from Nature: Biologically Inspired Robot Navigation and SLAM—A Review. Künstl Intell 24, 215–221 (2010). https://doi.org/10.1007/s13218-010-0038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-010-0038-y

Keywords

Navigation