Skip to main content
Log in

A SLAM Overview from a User’s Perspective

  • Fachbeitrag
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

This paper gives a brief overview on the Simultaneous Localization and Mapping (SLAM) problem from the perspective of using SLAM for an application as opposed to the common view in SLAM research papers that focus on investigating SLAM itself.

We discuss different ways of using SLAM with increasing difficulty: for creating a map prior to operation, as a black-box localization system, and for providing a growing online map during operation.

We also discuss the common variants of SLAM based on 2-D evidence grids, 2-D pose graphs, 2-D features, 3-D visual features, and 3-D pose graphs together with their pros and cons for applications. We point to implementations available on the Internet and give advice on which approach suits which application from our experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andreasson H (2010) An application of SLAM to localize AGVs. Tech. Rep. urn:nbn:se:oru:diva-10393, Örebro University, project web page: aass.oru.se/Research/Learning/malta

  2. Bailey T, Durrant-Whyte H (2006) Simultaneous localisation and mapping (SLAM): part II state of the art. Robot Autom Mag 13(3):108–117

    Article  Google Scholar 

  3. Bay H, Tuytelaars T, Gool LV (2006) SURF: Speeded up robust features. In: Ninth European conference on computer vision, software: included in the OpenCV library

  4. Birk A, Schwertfeger S, Pathak K (2009) A networking framework for teleoperation in safety, security, and rescue robotics (SSRR). IEEE Wireless Commun 6(13):6–13

    Article  Google Scholar 

  5. Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the OpenCV library. O’Reilly, software: opencv.willowgarage.com

  6. Censi A (2008) An ICP variant using a point-to-line metric. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Pasadena, software: purl.org/censi/2007/csm

  7. Cheng Y, Maimone MW, Matthies L (2006) Visual odometry on the Mars exploration rovers. IEEE Robot Autom Mag, 54–62

  8. Durrant-Whyte H, Bailey T (2006) Simultaneous localisation and mapping (SLAM): part I. Robot Autom Mag 13(2):99–110

    Article  Google Scholar 

  9. Einhorn E (2009) Personal communication

  10. Frese U (2006) A discussion of simultaneous localization and mapping. Auton Robots 20(1):25–42

    Article  Google Scholar 

  11. Frese U, Schröder L (2006) Closing a million-landmarks loop. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Beijing, pp 5032–5039, software: www.openslam.org/treemap.html

  12. Grisetti G, Stachniss C, Burgard W (2007) Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans Robot 23(1), software: www.openslam.org/gmapping.html

  13. Grisetti G, Stachniss C, Burgard W (2009) Non-linear constraint network optimization for efficient map learning. IEEE Trans Intell Transp Syst 10(3):428–439, software: www.openslam.org/toro.html

    Article  Google Scholar 

  14. Gross et al (2009) TOOMAS: Interactive shopping guide robots in everyday use—final implementation and experiences from long-term field trials. In: Proceedings IEEE/RJS international conference on intelligent robots and systems, St. Louis, pp 2005–2012

  15. Guivant JE, Nebot EM (2001) Optimization of the simultaneous localization and map building (SLAM) algorithm for real time implementation. IEEE Trans Robot Autom 17:242–257, dataset: services.eng.uts.edu.au/~sdhuang/research.htm

    Article  Google Scholar 

  16. Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Huang S, Wang Z, Dissanayake G, Frese U (2009) Iterated D-SLAM map joining: evaluating its performance in terms of consistency, accuracy and efficiency. Auton Robot 27(4), software: www.openslam.org/2d-i-slsjf.html

  18. Klein G, Murray D (2007) Parallel tracking and mapping for small AR workspaces. In: Proceedings of the sixth IEEE and ACM international symposium on mixed and augmented reality (ISMAR’07), Nara, software: www.robots.ox.ac.uk/~gk/PTAM

  19. Kleiner A, Dornhege C (2009) Operator-assistive mapping in harsh environments. In: Proceedings of the IEEE international workshop on safety, security and rescue robotics (SSRR), Denver

  20. Konolige K, Agrawal M, Sola J (2007) Large-scale visual odometry for rough terrain. In: International symposium on research in robotics

  21. Kümmerle R, Hähnel D, Dolgov D, Thrun S, Burgard W (2009) Autonomous driving in a multi-level parking structure. In: Proceedings of the IEEE int. conf. on robotics and automation, Kobe, pp 3395–3400

  22. Leonard J, Durrant-Whyte H (1992) Dynamic map building for an autonomous mobile robot. Int J Robot Res 11(4):286–298

    Article  Google Scholar 

  23. Li H, Hartley R (2006) Five-point motion estimation made easy. In: International conference on pattern recognition, pp 630–633

  24. Lourakis M, Argyros A (2009) Sba: A software package for generic sparse bundle adjustment. ACM Trans Math Softw 36(1), software: www.ics.forth.gr/~lourakis/sba

  25. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  26. Neira J, Tardós J (2001) Data association in stochastic mapping using the joint compatibility test. IEEE Trans Robot Autom 6(17):890–897

    Article  Google Scholar 

  27. Nüchter A (2009) 3D robotic mapping. Springer tracts in advanced robotics (STAR). Springer, Berlin, software: openslam.org/slam6d.html

    MATH  Google Scholar 

  28. Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  29. Quigley M et al (2009) ROS: an open-source robot operating system. In: Proceedings of the ICRA-workshop on open-source robotics, software: ros.org

  30. Rodriguez-Losada D, Matia F, Galan R (2006) Building geometric feature based maps for indoor service robots. Robot Auton Syst 54(7):546–558

    Article  Google Scholar 

  31. Snavely N, Seitz S, Szeliski R (2008) Modeling the world from internet photo collections. Int J Comput Vis 80(2):189–210, software: phototour.cs.washington.edu/bundler/

    Article  Google Scholar 

  32. Stachniss C, Mozos OM, Burgard W (2009) Efficient exploration of unknown indoor environments using a team of mobile robots. Ann Math Artif Intell 52(2):205–231

    Article  Google Scholar 

  33. Thrun S, Leonard J (2009) In: Siciliano B, Khatib O (eds) Springer Handbook of Robotics. Springer, Berlin, chap 34

    Google Scholar 

  34. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

    MATH  Google Scholar 

  35. Thrun S et al. (2000) Probabilistic algorithms and the interactive museum tour-guide robot minerva. Int J Robot Res 19(11):972–999

    Article  Google Scholar 

  36. Thrun S et al. (2004) Autonomous exploration and mapping of abandoned mines. Robot Autom Mag 11(4):79–91

    Article  Google Scholar 

  37. Triggs W, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment—a modern synthesis. In: Triggs W, Zisserman A, Szeliski R (eds) Vision algorithms: theory and practice, LNCS. Springer, Berlin, pp 298–375

    Chapter  Google Scholar 

  38. Wurm KM, Hornung A, Bennewitz M, Stachniss C, Burgard W (2010) Octomap: a probabilistic, flexible, and compact 3D map representation for robotic systems. In: Proceedings of the ICRA 2010 workshop on best practice in 3D perception and modeling for mobile manipulation, software: octomap.sf.net

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Frese.

Additional information

This work has been partly supported under DFG grant SFB/TR 8 Spatial Cognition and BMBF grant 01IS09044B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frese, U., Wagner, R. & Röfer, T. A SLAM Overview from a User’s Perspective. Künstl Intell 24, 191–198 (2010). https://doi.org/10.1007/s13218-010-0040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-010-0040-4

Keywords

Navigation