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Abstract Over the past five to seven years the analysis
of trajectory data has established itself as an indepen-

dent research discipline within the area of data mining.
In this article we provide an overview on data character-
istics, state-of-the-art preprocessing and analysis meth-

ods of trajectory data. We conclude the article with a
collection of challenges that arise due to the increas-
ing variety of spatiotemporal data sources and which
have to be solved for the application of spatiotemporal

analysis methods in practice.
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1 Introduction

Nearly every object, event or phenomenon can be refer-
enced in space and time. The analysis of spatiotemporal

data is therefore of interest in many industry and ser-
vice sectors, e.g. traffic management, agriculture, dis-
aster management, location planning or location based
services. Consequently, the demand for analysis and
modeling techniques has increased in parallel with the
volume of collected data over the past years. Spatiotem-
poral data has many different forms and includes data
such as georeferenced time series, remote-sensing im-
ages or moving object trajectories. In this overview
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we will focus on trajectory data, i.e. data containing
the movement history of mobile objects. The analysis

of trajectory data is an interdisciplinary research field
and involves communities from geographic information
science (GIScience), database technology, data mining,

visual analytics, sensor networks, distributed systems,
transportation science as well as privacy. In the data
mining community, the analysis of trajectory data is
often referred to as trajectory or mobility mining.

Mobility mining is still a young research discipline
and has emerged from the field of spatial data min-

ing about five to seven years ago. Its analysis tech-
niques differ from classic data mining techniques be-
cause of data characteristics and the complexity of the

data. One principal difference between spatial and non-
spatial data is autocorrelation, which means that ob-
jects with similar characteristics are typically clustered
in space. This characteristic contrasts with the often

made assumption of independent, identically distributed
data samples in classic data mining and results in in-
accurate or inconsistent models if autocorrelation is ig-

nored [45]. In addition, spatial characteristics do not
necessarily spread evenly in space. For example, natural
borders such as rivers and mountains influence the vari-
ation of spatial phenomena. For movement behavior the
street network has an even higher significance because
it canalizes mobility. Besides these spatial dependen-
cies, movement behavior is influenced by physiological
and social circumstances. For example, the maximum
walking speed and available means of transportation re-
strict the daily range of operation. The habit of return-
ing to a home base for sleep and fixed work schedules
are further constraints that impose a strong regularity
on human movement behavior. A first classification of

such constraints has been given by Hägerstrand [20] in
the area of time geography in 1970.
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For the development of algorithms and analysis meth-

ods for spatiotemporal data this means that it is only a

first step to adapt existing data mining algorithms to a

new data structure. The second, more challenging step

is to incorporate expert and background knowledge into

the discovery process. Especially the analysis of tra-

jectory data requires background information because

movement is seldom an end in itself. Instead, it is the

means to achieve some goal at a given place. The quan-

titative and qualitative growth of georeferenced data

has facilitated the incorporation of background knowl-

edge over the past years. However, it has also given rise

to a number of future research challenges.

In the following we will give an introduction to knowl-

edge discovery from trajectory data. Section 2 intro-

duces trajectory data sources and data structures. Sec-

tion 3 describes preprocessing and feature extraction

methods and Section 4 provides an overview on analy-

sis tasks and trajectory data mining methods. We con-

clude the paper with a section on research challenges of

mobility mining, which are decisive for its application

in practice.

2 Trajectory Data Sources and Data Structures

The wide availability of positioning technology as well

as advances in trajectory data analysis have opened new

ways for the collection of movement information. While

past mobility studies recorded personal movement data

primarily through an active involvement of the user us-

ing questionaries or interviews, technologies such as the

Global Positioning System (GPS), Global System for

Mobile Communications (GSM), Bluetooth or Radio

Frequency Identification (RFID) allow the passive col-

lection of movement information.

Depending on the applied positioning technology,

trajectory data differs in its spatial and temporal reso-

lution. For example, GPS records have a very high spa-

tial resolution while their temporal resolution typically

depends on the battery power of the employed devices.

Positions may be recorded as often as every second or

in intervals of a few minutes or even hours (e.g. when

monitoring wild animals). GSM data, in contrast, pos-

sess a coarse spatial resolution, which ranges between a

few hundred meters and several kilometers depending

on the structure of the cellular network. Typically, GSM

data is provided in form of call detail records (CDR),

which are used for billing purposes. In this type of data,

the radio cell of a user is only known during a call activ-

ity. Thus, the position records are of sporadic nature.

The advantage of GSM technology in comparison to

GPS lies in its high penetration within the population,

which allows to form large, long-term data samples.

Several data models exist in order to store trajectory

data and to analyze it in a trajectory database or a tra-

jectory data warehouse. All models have to decide be-

tween a discrete and a continuous temporal representa-

tion of movement. As positioning techniques are bound

to record position data at discrete points in time, it is

natural to choose a discrete representation of trajecto-

ries, too. Typically such a trajectory in 2-dimensional

geographic coordinate space is represented simply as a

sequence of tuples

( (x1, y1, t1), . . . , (xn, yn, tn) )

with (xi, yi) denoting coordinates in a given geographic

reference system and ti denoting points in time with

t1 < . . . < tn ∀i ∈ 1..n. A more advanced model is

the moving objects data model [16,19]. The model was

designed to express continuous changes of objects over

time, both in their position and extent. It is thus able to

model moving point objects as well as moving regions.

The model has been implemented in the database en-

gine Secondo [19]. A second database engine, called

Hermes, has been designed specifically for the support

of trajectory data analysis [39]. It provides a rich set of

operations and distance functions and possesses exten-

sions for privacy preserving data analysis.

3 Trajectory Preprocessing and Feature

Extraction

Preprocessing and feature extraction require a signif-

icant amount of attention and time in spatiotemporal

data analysis because of noisy position records and time

consuming spatiotemporal operations. In spatial and

spatiotemporal data mining two approaches of feature

extraction are possible. It can be done either previous

to the mining step or it can be incorporated into it. The

former approach is advantageous if many different min-

ing algorithms are tested on the data. In addition, it

allows to apply non-spatial data mining methods. The

latter approach allows to exploit spatial features dy-

namically during the discovery process. It has the ad-

vantage that only those regions of the search space need

to be explored that are likely to contain interesting hy-

potheses.

In the database literature trajectory preprocessing

is also referred to as trajectory construction. It com-

prises the steps data cleaning, data compression and

data segmentation [51]. During data cleaning measure-

ment noise and outliers are removed. Data compression

reduces the amount of trajectory sample points because

frequent position records easily lead to large volumes of

data. A recent evaluation of compression techniques is
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given in [34]. Data segmentation is the division of a

trajectory into meaningful sub-trajectories, which are

required for the extraction of stops and moves and sub-

sequently for trajectory annotation. Different strategies

for trajectory segmentation exist, including the detec-

tion of stops [46,31], the detection of sequences with

homogeneous movement characteristics [10] or the de-

tection of representative sub-trajectories in a trajectory

database [37].

For trajectory data analysis characteristics of a sin-

gle trajectory as well as the relationship between two

or more trajectories are important. Andrienko et al.

[6] group features of a single trajectory into two ba-

sic categories: moment-related and overall characteris-

tics. Moment-related characteristics can be extracted

for each point in time whereas overall characteristics

rely on a trajectory interval. Examples of moment-re-

lated characteristics of a trajectory are a moment’s spa-

tial and temporal reference, direction or speed of move-

ment. Examples of overall characteristics of a trajectory

are the trajectory’s geometry, length and duration or its

minimum, average and maximum speed [6].

In order to specify the relationship between two

or more trajectories, distance functions and topolog-

ical relations can be used. Pelekis et al. [38] make a

basic distinction between distance functions relying on

spatiotemporal characteristics or on spatial characteris-

tics only. In the case of spatiotemporal characteristics a

small distance is assumed if mobile entities follow sim-

ilar routes concurrently whereas in the case of spatial

characteristics only the similarity of routes is decisive.

In addition, derived characteristics of a trajectory such

as speed and direction can be considered in the distance

function. Concrete examples of distance functions are

given in [38,5,40].

In order to define topological relations between tra-

jectories again their relation in space and in time can

be considered. The predominant formal model to de-

scribe topological relations between two spatial objects

has been developed by Egenhofer [15] and is called the

9-intersection model. For time intervals Allen [1] has

defined seven temporal relations. In order to express

spatiotemporal topological relations, both relations can

be combined [13,12].

4 Analysis Tasks and Methods

In this section we give an introduction to the most

prominent analysis tasks and data mining algorithms

for mobile entities, namely clustering, pattern analysis,

location prediction and trajectory annotation. A com-

prehensive overview on the topic can be found in [35].

4.1 Clustering

The clustering of trajectories, i.e. the segmentation of

trajectories into groups with similar movement char-

acteristics and determination of group representatives,

generally takes place on a set of trajectory sections

rather than on the lifelong trajectories of entities. State-

of-the-art clustering techniques for trajectories rely on

traditional clustering algorithms and put their main ef-

fort into the definition of meaningful similarity (dis-

tance) functions as described in Section 3. Nanni and

Pedreschi [36] recommend the usage of density-based al-

gorithms for trajectory clustering as, for example, the

Optics algorithm. A common approach for the clus-

tering of trajectory data is also the stepwise, visually

aided application of clustering algorithms. The gradual

refinement of clusters has the advantage that it breaks

down complexity with respect to comprehensibility as

well as to computational resources [40,4].

4.2 Pattern Analysis

Trajectory patterns describe interesting behaviors of

groups of moving objects. Hereby, two tasks are consid-

ered in the literature: the detection of frequent move-

ment patterns and the detection of pattern occurrences.

In the first case the goal is to identify the pattern itself,

for example, a frequent movement from location A to

location B to location C. In the second case the goal

is to identify when and where a specific pattern occurs

and which entities participate in it, for example, the

convergence of a group of entities to some location. In

the following we will discuss both data mining tasks in

more detail.

Mining frequent trajectory patterns is the task of

extracting (parts of) routes that are frequently followed

by the objects of interest. Frequent trajectory patterns

can hereby be defined using spatial or spatiotemporal

characteristics of the trajectories. In the first case only

the sequence of the visited locations is considered. In

the second case the transition times between the loca-

tions are also important. In order to detect frequent

spatiotemporal patterns, Giannotti et al. defined the

concept of temporally annotated sequences (TAS) [17]

and later generalize it to trajectory patterns (also called

T-patterns) [18]. A TAS is a sequence of items along

with a sequence of transition times (i.e. the temporal

annotations) between the items. The items hereby rep-

resent geographic locations. In T-patterns the items are

substituted with pairs of coordinates in two-dimensional

geographic coordinate space. In order to specify the

containment of a T-pattern in a trajectory the authors
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define a neighborhood function. One challenge of tra-

jectory pattern mining is the handling of continuous

geographic coordinate space. Clearly, two persons that

travel along a street will not yield trajectories with the

same coordinates. Therefore trajectories are typically

discretized previous to pattern mining [23,18].

The detection of pattern occurrences naturally re-

quires a specification of the pattern to be detected. The

most commonly used patterns for this task are group

patterns. Group patterns refer to objects that conform

to a specified collective behavior and may involve de-

rived information concerning the whole group of ob-

jects (e.g. average speed). Intuitively, a group is formed

by a number of objects that stay close in space for

a meaningful period of time. Algorithms that detect

such groups of objects are provided by Wang et al. [50]

for regularly spaced trajectories and by Hwang et al.

[22] for irregularly spaced trajectories assuming linear

movement. In addition to the general definition of spa-

tiotemporal closeness, a group can be specified by some

characteristic internal structure. For example, a group

could be headed by some individual who anticipates the

group motion. This pattern is called leadership and was

introduced by [26] under the general concept of relative

motion (Remo). Other basic spatiotemporal group pat-

terns of Remo are flock, convergence and divergence.

Algorithms for the efficient computation of Remo pat-

terns and their extensions are provided, for example, in

[3,8,49].

4.3 Location Prediction

The prediction of future locations of moving objects has

been of interest in mainly two research areas, namely

moving object database systems and wireless communi-

cation networks. Moving object databases employ loca-

tion prediction, for example, in range queries [41,48] or

nearest neighbor queries [47,7] over the future positions

of moving objects. In wireless communication networks

location prediction serves mainly resource allocation

and cell paging, which requires to anticipate the mo-

tion of users for the near future. Several algorithms have

been investigated to accomplish this task using neural

networks [30] or Gauss-Markov models [28]. More re-

cently, further methods have been developed for the

prediction of the most likely route [25] or of destina-

tions [33,53,27]. The underlying assumption hereby is

that people follow daily or weekly routines and have

only a few frequently visited locations, which is one of

the main characteristics of human movement behavior.

4.4 Trajectory Annotation

Trajectory annotation means to lift a trajectory from its

representation in physical space to a semantic space. A

semantic trajectory has the advantage that it contains

information about why and how people move. Trajecto-

ries can be annotated with different types of semantic

information, among them are stop locations and ac-

tivities [2,29,54] or means of transportation [43]. An

automated framework for trajectory annotation has re-

cently been proposed by Yan et al. [51]. In addition, the

work in [52] is a first step toward online segmentation

and annotation of trajectories.

5 Challenges in Spatiotemporal Data Analysis

The analysis of spatiotemporal data has to face a num-

ber of challenges in the next years. Besides known issues

related to privacy and missing data, the tremendous

increase in geographic and time referenced data sets

challenges the development of new algorithms. On the

one hand, big data analysis requires scalable and dis-

tributed data mining algorithms as well as incremental

algorithms because more and more data sets are be-

coming available in near real-time. On the other hand,

the variety of data sources and the complexity of spa-

tiotemporal data makes it a major research task to work

on data harmonization and integration.

From our applied projects with the German and

Swiss outdoor advertising industry, we have experienced

that missing data is a serious problem in GPS mobility

surveys. Test persons easily forget to carry the device

or to charge its battery, which leads to a significant

amount of missing measurement days. Therefore, the

removal of test persons with missing data is not an op-

tion. If missing data is ignored, i.e. missing measure-

ment periods are treated as immobility, mobility quan-

tities derived from the data will be underestimated.

Therefore, analysis and modeling techniques have to be

advanced that are either able to impute missing values

or to handle missing values methodically. Special care

has thereby to be taken if the absence of data relates

to the mobility behavior of a person because it induces

a bias into the data sample [24].

Privacy is a second, serious challenge for spatiotem-

poral data analysis because movement trajectories are

inherently connected to a person’s places of interest,

including home and work location as well as attended

medical or religious services. It is therefore not suffi-

cient to simply remove personal identifiers from trajec-

tory data [9]. Some approaches already exist that apply

the concept of k-anonymity [42,32] or of differential pri-

vacy [14,11]. However, it remains a challenge to ensure
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privacy with respect to the large amount of available

background information that may be linked to the data

in question. Further, the intensity of anonymization al-

ways needs to be balanced against the remaining data

utility.

Finally, big data is certainly a challenge in the spa-

tiotemporal domain because nearly any event or process

can be referenced in space and time. Next to the wide

availability of monitoring technologies, the realization

of local authorities and business companies about the

value of their data collections (e.g. traffic counts, call

detail records) and their quest to make use of it have

contributed to the growth of data. This means, on the

one hand, to master many structurally and semantically

different data sets. On the other hand, this requires to

develop scalable methods that can handle the amounts

of data in the requested time. The diversity among data

sets can mainly be attributed to characteristics as their

representativeness, sampling rate and resolution, apply-

ing each to the spatial, temporal or population dimen-

sion of a data set. In the following we will take a closer

look into the various dimensions and problems that can

arise, which we have collected from our experience in

practice over the past years.

Spatial dimension. The spatial representativeness of

a data set can be biased if measurements are taken at

specific locations only. For example, traffic counts are

typically taken at major roads while the majority of

streets are minor roads. Furthermore, data sets may be

available only for specific regions or cities. As mobile

behavior (e.g. average daily travel distance or use of

public transportation) depends on local structures (e.g.

size of city), an extrapolation of mobility characteristics

to other regions is not straightforward. In addition, the

density of measurements influences the choice of anal-

ysis methods and evaluations. Clearly, dense GPS data

will allow to estimate travel distance and even requires

to remove points within stop locations for distance es-

timation while CDR data will underestimate this quan-

tity [44]. Finally, the spatial resolution of data records

can vary between a few meters (GPS), a few tens or

hundreds of meters (Bluetooth, GSM) or even kilome-

ters (GSM). In order to use data with a coarse spatial

resolution on a detailed geographic level of scale, ap-

propriate disaggregation methods have to be developed

as e.g. in [21].

Temporal dimension. The temporal representative-

ness of trajectory data is tightly coupled to the sam-

pling mechanism. For example, positions can be recorded

in regular time intervals (with high or low frequency)

or in dependence of certain events as, for example, call

activities in the case CDR data. In the latter case rep-

resentativeness in time as well as space is not guaran-

teed. In addition, the observation period is important

because traffic differs over the day, between weekdays

and weekends as well as between working periods and

vacation times. Two data sets taken in different time

periods may therefore require a scaling factor in order

to be comparable. Scaling factors about the temporal

distribution of traffic are also required to adapt the tem-

poral resolution of data sets, for example, to convert

daily traffic counts to the level of hours.

Population dimension. The sample size of spatiotem-

poral data sources has immensely gained by the avail-

ability of big data. However, population representative-

ness is a major issue because data sets are primarily col-

lected for other purposes. Data sets collected through

companies are typically limited to the range of cus-

tomers, and over-represent specific sociodemographic

groups in the population depending on the business

strategy. The correction of such a bias is often aggra-

vated by the fact that sociodemographic information

cannot be shared due to privacy restrictions. A simi-

lar problem is encountered in Bluetooth data, because

Bluetooth enabled devices such as smart phones are

not evenly distributed in the population. However, as

long as data representativity cannot be ensured, the

value of mined patterns is questionable. When analyz-

ing data of a regional population (e.g. the trajectory

data is collected from inhabitants of a given city) it is

furthermore important to consider effects of externals

as, for example, commuters or tourists. The resolution

of trajectory data sets with respect to the population is

typically on the level of individuals. However, changing

identifiers over time due to privacy reasons can compli-

cate analysis as well as the usage of multiple tracking

devices per person (e.g. mobile phones).

In summary, the availability of diverse movement

data sources makes it an important task to develop in-

telligent analysis methods not only for the specific task

at hand but also for the identification and handling of

mechanisms that disturb data representativeness. Only

then will it be possible to benefit from the availability of

various data sources and to remedy the weakness (e.g.

in sampling rate or granularity) of one data set with

the strength of another.
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